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ABSTRACT 

The vertebrate fauna of the West Indies (1262 species) exhibits high levels of en­
demism and has a taxonomic composition characteristic of more isolated oceanic 
islands. Many groups that are widespread on the mainland are absent in the is­
lands, and some of those present are characterized by large adaptive radiations. 
The growing fossil record of West Indian vertebrates, including mid-Tertiary 
amber fossils (considered here to be 20-30 million years old), indicates that 
this pattern of reduced higher-taxon diversity has persisted for a long period of 
time. Phylogenetic relationships of nonvolant groups display a strong South 
American influence, whereas volant groups (birds and bats) and freshwater fish 
show closer ties with Central and North America. Molecular estimates of di­
vergence times between island taxa and their mainland counterparts indicate a 
Cenozoic origin (within the last 65 million years) for nearly all groups examined. 
Together, data from different sources point to an origin by overwater dispersal 
for a large majority of the vertebrate fauna. The prevailing current direction, 
from southeast to northwest, and the wide scattering of estimated times of ori­
gin suggest that much of the nonvolant fauna arrived by flotsam carried from 
the mouths of major rivers in northeastern South America. Spatial relationships, 
especially considering low sea levels during the Pleistocene, appear to better ex­
plain the routes of colonization taken by the volant fauna and freshwater fish. 
Caribbean geologic history does not preclude an origin by late Mesozoic vicari­
ance for several possibly ancient groups, although an early Cenozoic arrival by 
dispersal also cannot be discounted. An integrative approach to historical bio­
geography is shown to be more insightful than the current trend in the field, 
cladistic biogeography, which places prime emphasis only on phylogenetic rela­
tionships. 
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INTRODUCTION 

From a biogeographic standpoint, the West Indies includes the Greater Antilles 
(Cuba, Jamaica, Hispaniola, Puerto Rico), Lesser Antilles, Bahamas, and some 
peripheral islands. Trinidad, Tobago, and the islands adjacent to Venezuela 
usually are excluded from this definition because they have a biota more char­
acteristic of South America (11). Among the plants and animals of the West 
Indies, the vertebrates (1262 species) exhibit some of the highest levels of 
endemism and therefore have been of considerable interest in biogeographic 
studies of the Caribbean region. Compared with Madagascar, which has three 
times the area, there are 60% more species in the West Indies, representing about 
5% of all known extant terrestrial vertebrates (Table 1; 197). Sharply rising 
discovery curves for some West Indian groups indicate that more species remain 
to be discovered (74). Despite this high species diversity, many major groups 
are absent when compared with the adjacent mainland, including primary di­
vision freshwater fishes, salamanders, caecilians, marsupials, carnivores, un­
gulates, lagomorphs, and most families of frogs, turtles, and snakes. Instead, 
exceptionally large radiations characterize some of the groups present, such 
as eleutherodactyline frogs, anoline and sphaerodactyline lizards, capromyid 
rodents, and megalonychid edentates. 

The focus of this review is the origin of the West Indian vertebrate fauna. Al­
though not an exhaustive survey, aspects of the complex geologic history, fossil 
record, and biogeographic mechanisms are briefly discussed, and taxon-specific 
patterns are reviewed. Finally, these data are brought together to elucidate gen­
eral patterns of historical biogeography for the West Indian vertebrate fauna as 
a whole. 

Table 1 Numbers of orders, families, genera, and species of native West Indian vertebratesa 

Genera Species 

Group Orders Familiesb Total Endemic % Endemic Total Endemic % Endemic 

Freshwater fishes 6 9 14 6 43 74 71 96 
Amphibians I 4 6 I 17 166 164 99 
Reptiles 3 19 50 9 18 449 418 93 
Birds 15 49 204 38 19 425 150 35 
Mammals: 

Bats 7 32 8 25 58 29 50 
Other 4 9 36 33 92 90 90 100 

TOTAL 30 97 342 95 28 1262 922 73 

'Following sources listed in subsequent tables. 
blncluding one endemic family of birds and four of mammals. 
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GEOLOGIC HISTORY 

Tectonic Development of the Caribbean 
Only general aspects of the complex geologic history of the Caribbean region 
are mentioned here. For those interested in more detailed coverage, geologists 
provide several recent reviews (e.g. 36,43). 

The complexity of Caribbean geology is due in part to the position of the 
region, wedged between two major continental and oceanic plates (North and 
South America), and bounded on the west by Pacific plates. Although rocks 
as old as Precambrian occur in the Greater Antilles (44), the origin of the 
Caribbean region is tied to the breakup of Pangaea (mid-Jurassic), when Laura­
sia began to separate from Gondwana. The initial ocean floor that formed the 
gap between the two continents subsequently disappeared through subduction. 
Later, in the mid-Cretaceous, the Caribbean Plate formed in the eastern Pa­
cific and has since moved eastward relative to the North and South American 
Plates. Volcanic islands formed along the northern and eastern margins of 
this plate as it moved, due to subduction of the North American Plate be­
neath the lighter Caribbean Plate, creating the proto-Antilles. In the early 
Tertiary, the northeastern boundary of the Caribbean Plate (Cuba, Hispaniola, 
Puerto Rico) collided with the Bahamas Platform (on the North American 
Plate) and essentially "plugged" the subduction in that region. Subsequently, 
the plate began to move in a more easterly direction, and a major fault devel­
oped to the south of Cuba, along with a small spreading center and associated 
fault zone (Cayman Trough). Jamaica and the southern portion of Hispaniola 
moved eastward along the northern edge of the Caribbean plate; eventually 
southern Hispaniola collided with northern Hispaniola in the Miocene (85). 
Southeastern Cuba and northern Hispaniola may have been connected in the 
early Tertiary and separated in the middle to late Eocene (44) or Oligocene 
(87a). The Bahamas Bank has remained as a carbonate platform fixed to the 
North American Plate, and the. Lesser Antilles have remained as a classical 
island arc, moving eastward along the leading edge of the Caribbean Plate 
(36,43). 

Recently, it was suggested that the southern and northern Lesser Antilles have 
had separate geologic histories that have influenced the evolution of anoline 
lizards (158). However, a closer examination of the geologic evidence does not 
support that suggestion. For example, the major evidence was a purported fault 
zone in the central portion of the Lesser Antilles proposed in the late 1970s and 
early 1980s (12), but geologists (and others) abandoned that hypothesis in the 
late 1980s for lack of evidence (13,84,121). Also, other geologic studies cited 
(e.g. 174) do not support a geologic break between Dominica and Martinique. 
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Instead, the Lesser Antilles would appear to form a classic island arc of volcanic 
islands built above a subduction zone (184). 

PALEOGEOGRAPHY The aspect of Caribbean geologic history of greatest inter­
est to biogeographers, the relationships of emergent land areas, unfortunately 
is the one that is most poorly understood. There is no place in the West Indies 
that is known by the presence of a continuous sequence of sediments to have 
been emergent since the late Cretaceous, although some areas of Cuba, north­
ern Hispaniola, and possibly Puerto Rico, may have been. Current geologic 
evidence is inconclusive but suggests that the proto-Antilles did not form a 
continuous dry land connection similar to the present-day Isthmus of Panama; 
instead it was probably a chain of islands (41, 42, 138). However, the recent 
suggestion that there were no permanently subaerial landmasses in the Greater 
Antilles prior to 42 million years ago (mya) (111a, 112a) is speculative; it can 
be neither refuted nor supported with current evidence. 

Karst topography and exposed limestone rock are abundant in the West Indies 
and reflect the widespread mid-Tertiary inundation of most land areas. Many of 
the present high mountain ranges are the result of relatively recent (late Tertiary 
and Quaternary) orogenic activity and cannot be used as a guide to the early or 
mid-Tertiary physiography of the West Indies. For example, probably no part 
of Jamaica was more than a few meters above sea level from the middle Eocene 
to the middle Miocene (2, 20, 155), although subsequent orogenic activity has 
obliterated part of the evidence (widespread limestone formations). The Blue 
Mountains of eastern Jamaica, rising to over 2200 m, were uplifted only 5-10 
my a (30, 185). 

In Cuba, paleogeographic reconstructions suggest that some land areas were 
emergent throughout the Cenozoic (65-0 mya), possibly forming small islands. 
Beginning in the early Miocene, the present major upland areas of Cuba proba­
bly were large islands, later coalescing in the late Miocene and Pliocene as the 
present island shape emerged (44, 87). 

In Hispaniola, the emergent land areas during the mid-Tertiary quiescent 
period were the Cordillera Central, Cordillera Oriental, and possibly a portion 
of the La Selle-Baoruco Range in the south (14, 104, 118, 126). Even in the 
Cordillera Central, the recent major uplift of that mountain range took place 
only 3-4 my a (105). Initial uplift ofthe Massif de La Hotte on the southwestern 
peninsula of Hispaniola is correlated with the collision between the South Island 
and northern Hispaniola; this began in the middle Miocene (15 mya), and the 
entire peninsula emerged in the Pliocene (5 mya) and Pleistocene (105). The 
major uplift of the Massif de La Selle and Sierra de Baoruco also began in 
the middle Miocene, although some small portions may have been emergent 
throughout the mid-Tertiary (118). The Sierra de Neiba and the Sierra Martin 
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Garcia, which are areas of endemism for vertebrates (164), apparently were not 
emergent until the late Miocene or Pliocene (5-10 mya; 126). 

Most of Puerto Rico, and probably the Virgin Islands, was submerged from 
the late Eocene to the Pliocene (105). However, several periods of localized 
uplift occurred, from the late Cretaceous to the late Oligocene, on the Puerto 
Rican Bank. During one such event (late Eocene to mid-Oligocene), uplift 
of several kilometers occurred (99), and palynological evidence suggests a 
high altitude flora at that time (57, 58). These data indicate that some emer­
gent land areas may have persisted on the Puerto Rican Bank throughout the 
Cenozoic. 

The Bahamas Bank has been a carbonate platform since the mid-Mesozoic, 
gradually subsiding but maintaining near sea-level elevations as carbonate reef­
deposits accumulated (39, 131). As such, it has been subject to periodic sub­
mergence and emergence, the latter most recently in the Pleistocene. Basement 
rocks in the northern Lesser Antilles are as old as Jurassic, but the oldest rocks 
in the southern Lesser Antilles are middle Eocene (184). The Cretaceous date 
for rocks on Union Island (Grenadines), mentioned in the earlier geologic lit­
erature and recently cited for biogeographic purposes (158), was in error (12, 
175). The degree to which Lesser Antillean volcanoes have been emergent 
during the history of the island arc is unknown. 

FOSSIL RECORD 

Tertiary 
AMBER FOSSILS Amber deposits in the Dominican Republic provide dra­
matic documentation of a mid-Tertiary biota, including (among vertebrates) 
frogs (Eleutherodactylus, seven specimens), lizards (Anolis, five specimens; 
Sphaerodactylus, six specimens), mammals (hair and bones), and a bird (feath­
ers) (9, 99a, lIla, 141-143, 154). The mammal hair is believed to be from a 
rodent, the mammal bones from an insectivore, and one bird feather has been 
identified as belonging to a woodpecker or relative (Picidae). Critical to un­
derstanding the importance and relevance of these amber fossils to Caribbean 
biogeography is the establishment of their age. 

Recent tabulations of dates for Tertiary fossils of West Indian vertebrates 
(112, 112a) listed two of the lizard fossils as Miocene and a frog fossil as 
Late Eocene. However, those and several other important vertebrate fossils 
all came from the same mine (La Toca) in the Cordillera Septentrional and 
therefore are considered to be of the same age (143). That age was determined 
to be late Eocene (40 mya) based on microfossils from a locality (EI Mamey) 
west of La Toca in the Altimira Formation (47) and on correlative evidence 
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from nuclear magnetic resonance spectroscopy (98, 143). Since then, further 
studies on the geology of the Cordillera Septentrional have distinguished the 
formation containing the amber mine as the La Toca Formation (38, 40). This 
formation ranges from Lower Oligocene to lower Middle Miocene and contains 
massive conglomerates in the lowermost portion and turbiditic sandstones and 
mudstones in the middle and upper portions (40). Because Dominican amber 
is found in turbiditic sandstones (45), and because those rocks, within the La 
Toca Formation, have been dated by nanofossils as upper Oligocene to lower 
Middle Miocene (40), the age range (minimum to maximum) of the La Toca 
amber fossils is 15-30 mya. Indirect evidence from nuclear magnetic resonance 
spectroscopy and hardness (98) would suggest that the older portion of that time 
interval (20-30 mya) contains the actual age of the fossils, concordant with an 
upper Oligocene time assigned to amber from the Cordillera Septentrional in a 
stratigraphic correlation (119). 

NONAMBER FOSSILS There are several other pre-Quaternary fossils of verte­
brates: a cichlid fish (Cichlasoma) from Haiti- (28), ground sloths from Cuba 
(112) and Puerto Rico (112a), and a capromyid rodent and platyrrhine pri­
mate from Cuba (112a). All are early Miocene except the Cuban sloth (early 
Oligocene). Two reptilian vertebrae are known from Miocene deposits on 
Puerto Rico and are believed to belong to a boid snake and an iguanid lizard 
(114). All of these nonamber fossils belong to extant (or recently extinct) 
Antillean families. 

Quaternary 
The best fossil record for West Indian vertebrates comes from Pleistocene and 
Holocene cave and fissure deposits. During the glacial maxima, the West Indies 
experienced much drier conditions than they do now, and arid-adapted species 
flourished (149). The reason for the relatively large number of vertebrate extinc­
tions since the Pleistocene is not well established, but it is likely a combination 
of several factors: reduction in arid habitats, reduction of land area by elevated 
sea levels, and human-associated causes (128, 129, 134, 148, 149, 176). Hu­
mans colonized the West Indies about 7000 years ago (159), and it is probable 
that many Holocene extinctions were the result of contact by Amerindians and 
Europeans (129). 

BIOGEOGRAPHIC MECHANISMS 

Early Ideas 
Darwin (34) used the West Indian mammal fauna as an example of how islands 
surrounded by deeper water exhibit greater endemism, but otherwise he offered 



BIOGEOGRAPHY OF WEST INDIES 169 

no speculation as to the origin ofthe fauna. Wallace (186), however, was one of 
the first to discuss, albeit briefly, the zoogeography of West Indian vertebrates. 
He made special note of the impoverished nature of the fauna (at higher taxo­
nomic levels), an observation that would be repeated often (33,117,172) and 
one that has been appropriately termed "the central problem" (189). Because 
such a pattern of taxonomic composition is exactly what one sees on remote, 
oceanic islands (137a), this has been interpreted as evidence of overwater dis­
persal. However, land bridges between the islands and the continents also were 
proposed to explain the same patterns of distribution and faunal composition 
(5, 162, 163), launching a lengthy debate (33). Deep water now is known to 
surround many of the islands in the Greater and Lesser Antilles, precluding dry 
land connections due to recent sea-level changes, and therefore the "land bridge 
hypothesis" is no longer viable. However, vicariance, through the mechanism 
of plate tectonics, essentially has replaced the land bridge hypothesis as one of 
the two primary theories (with overwater dispersal) for the origin of the West 
Indian biota. 

Vicariance and Dispersal 
PHYLOGENY The vicariance theory of Caribbean biogeography suggests that 
the present West Indian biota represents the fragmented remnants of an ancient 
biota that was continuous with those of North and South America in the late Cre­
taceous (156, 157). Plate tectonic reconstructions still have not "stabilized" to a 
single well-supported scenario for the Caribbean region (71, 139, 140), but the 
proto-Antillean island arc required in the vicariance hypothesis is, nonetheless, 
a common theme in most reconstructions. Thus, proto-Antillean vicariance 
cannot be eliminated on geological grounds. 

The primary evidence used to support the vicariance theory has come from 
cladistic (vicariance) biogeography (86, 133). The basic premise of this ap­
proach is that congruence among organismal phylogenies, and between those 
phylogenies and area relationships, supports vicariance. The early proponents 
of cladistic biogeography considered dispersal to be untestable and unscientific 
(133), a viewpoint that has not changed significantly (130). Even the less ex­
treme viewpoints place dispersal in a secondary role: "dispersal should be a 
last resort for explaining modern distributions and used only after all vicariance 
possibilities have been considered" (60). Following this approach, cladistic bio­
geographers have claimed considerable support for a vicariant origin for West 
Indian vertebrates (32, 62, 63, 93, 94, 135, 156, 157, 160, 161). 

However, this fundamental tenet of cladistic biogeography recently was 
called into question (79). The claim that phylogenetic evidence alone can 
provide such support of vicariance is rejected for the simple reason that dispersal 
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can produce the same phylogenetic patterns (173a). Fully congruent phyloge­
nies, even those congruent with a geological scenario, can be produced through 
concordant dispersal. Geographic proximity, air currents, water currents, and 
other factors all combine to produce higher probabilities of dispersal from some 
areas than others. In the West Indies, this is especially true because ocean cur­
rents flow almost unidirectionally from southeast to northwest (see Figure 1). 
Therefore, dispersal to the West Indies by rafting on currents is much more 
likely from South America than from Central or North America (74). 

Because many West Indian vertebrate groups have their closest relatives in 
South America (see below), the methodology of cladistic biogeography would 
dictate that a vicariant event must have separated South America from the West 
Indies. However, concordant dispersal provides an equally valid explanation. 
The data that can distinguish between these two possibilities are the times of 
divergence of West Indian taxa from their closest relatives on the mainland (74, 
78,79). Groups that diverged at the same time as the geologic separation can be 
inferred to have arisen by vicariance. Those ~oups that arose after the geologic 
separation can be inferred to have arisen by dispersal. Thus, phylogeny can 
help to establish whether a pattern exists and to identify the source area, but 
it is the timing of the divergence that allows one to distinguish between these 
alternative explanations (74, 79). 

TIMING Information on the time of divergence of West Indian vertebrate 
groups from their mainland relatives has come from the fossil record and from 
the use of molecular clocks. The presence of mid-Tertiary fossils has been used 
both for (143) and against (147) the vicariance theory. In the former case, an 
Eocene (40 mya) date for the amber fossils was used to suggest that a diverse 
fauna was present in the Antilles at an earlier date than generally proposed 
(143). However, those fossils now are considered to be younger (15-30 mya; 
see above), and dispersal could have occurred at any time (189). Although 
the fossil record continually is improving, it is at present of limited value in 
providing the crucial times of origin for West Indian lineages. 

More than 65 studies have been published involving protein electrophoretic, 
immunological, and DNA sequence divergence among West Indian vertebrates, 
mostly amphibians and reptiles (145). Of those, the data most frequently used to 
obtain times of divergence are immunological estimates of amino acid sequence 
divergence of a protein, serum albumin (23, 56, 64, 66, 69, 78, 169). The rate 
of evolution in this gene is remarkably constant in studies where geological and 
paleontological calibration was possible (122). 

To draw some general conclusions regarding the origin of the West Indian ver­
tebrate fauna, albumin immunological data from diverse lineages of amphibians 
and reptiles were assembled (78). In all 13 comparisons between West Indian 
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lineages and their closest relatives on the mainland, the estimated divergence 
times were later than predicted by vicariance, indicating mid-Tertiary rather 
than late Cretaceous origins (78, 79). Since then, other molecular and non­
molecular data were used to examine the remaining 64 independent lineages 
of West Indian amphibians and reptiles (74). With the possible exception of 
the frog genus Eleutherodactylus and the xantusiid lizard Cricosaura typica, 
all lineages appear to have originated in the Cenozoic. Phylogenetic analyses 
indicate that most West Indian groups have affinities with South American taxa, 
suggesting overwater dispersal from that continent. It was proposed that the 
nearly unidirectional (southeast to northwest) ocean currents have carried flot­
sam (e.g. 70,91) from the mouths of major rivers in South America to islands 
of the West Indies throughout the Cenozoic era (74). 

The Bolide Impact 
Given the geologic possibility for vicariance, the virtual absence of an ancient 
West Indian vertebrate fauna suggests that numerous extinctions may have oc­
curred since the formation of the proto-Antilles in the late Cretaceous. Because 
most of the mid-Tertiary fossils are of groups extant in the Holocene, an an­
cient West Indian biota-if it existed-would appear to have become extinct 
earlier in the Tertiary. To explain this, it was proposed that the impact of the 
Cretaceous-Tertiary (K-T) asteroid or comet (bolide) at 65 my a probably dev­
astated the ancient West Indian biota because of its very close proximity to that 
region (78). 

A large crater (Chicxulub) about 1 Ian beneath the surface of the Yucatan 
peninsula is believed by most geologists to be the impact site for the K-T bolide 
(81, 96, 120). The size of the crater is not agreed upon, but it is between 
170 km and 320 Ian in diameter, making it the largest known impact structure 
in the inner solar system during the last 4 billion years (82, 166, 167). At 
the time of impact, the Greater Antilles were the closest land masses, located 
only 1-3 crater diameters away (139). It was, in fact, the local effects of this 
impact that helped locate the crater (81). Giant wave deposits found in Haiti 
and Cuba indicated disturbances in sediments that were at least 2 Ian below sea 
level at that time (120). "Megawave" deposits also have been found in deep 
water (> 400 m) sediments in northeastern Mexico, containing leaves, wood, 
and terrestrial debris (173), and in the southern United States (81) and the Gulf 
of Mexico (1). Gigantic hurricanes (hypercanes), resulting from local heating 
of sea water, also have been proposed (48). Besides the devastating global 
effects of the impact, these catastrophic local effects would almost certainly 
have caused widespread extinctions of many organisms that might have existed 
in the Caribbean region at that time. 
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Table 2 Numbers of families, genera, and species of native West Indian freshwater fishes' 

Genera Species 

Order and famiIyb Total Endemic % Endemic Total Endemic % Endemic 

Luganoiiformes 
Lepisosteidae 0 0 100 

Ophidiiformes 
Bythitidae 100 4 4 100 

Cyprinodontiformes 
Poeciliidae 5 3 60 46 45 98 
Cyprinodontidae 2 1 50 8 8 100 
Fundulidae 0 0 1 0 0 
Rivulidae 0 0 7 7 100 

Atheriniformes 
Atherinidae 100 100 

Synbranchiformes 
Synbranchidae 0 0 0 0 

Perciformes 
Cichlidae 0 0 5 5 100 

TOTAL 14 6 43 74 71 96 

• After Burgess & Franz (17); but including the Miocene cichlid (28) and some recently described taxa. 
bThere are no endemic families. 

TAXON-SPECIFIC PATTERNS 

Freshwater Fishes 
There are six orders and nine families of freshwater fishes in the West Indies 
(Table2). Although no families are endemic, 6 of the 14 genera (43% ) and 71 of 
the 74 species (96% ) are endemic to the West Indies. Most of those species are 
restricted to a single island, portion of an island, lake, or even sinkhole. Species 
diversity is correlated with island area; Cuba (28 species) and Hispaniola (35 
species) have the most species, with relatively few on Jamaica (6 species), the 
Bahamas (5 species), Cayman Islands (4 species), and Martinique (1 species). 
There are no endemic species on Puerto Rico. Relationships still are not well 
known for many groups, but approximately 17 independent lineages of West 
Indian freshwater fishes can be identified: 9 with North (or Central) American 
affinities, 6 with relationships to South American taxa, and 2 of marine origin 
(17). 

Discussion of the historical biogeography of West Indian fishes has included 
both vicariance and dispersal as mechanisms for the origin of the fauna (16, 
17, 156). However, the Tertiary fossil record consists of only one fossil ci­
chlid from the early Miocene of Haiti (28), and there are no molecular data 
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that would permit dating of divergences. While it is a reasonable assumption 
that the few non-endemic species arrived by dispersal in the Quaternary, the 
time of origin for the remainder of the species cannot be inferred. All of the 
species are secondary not primary freshwater species, which means that they 
are to some degree tolerant of salt water. This fact has led previous workers 
(e.g. 132) to consider secondary freshwater species as inadequate indicators of 
biogeographic patterns. With the possible exception of the Cuban gar, there is 
no evidence to indicate that any of the West Indian lineages of freshwater fishes 
are of ancient (Cretaceous) origin. 

The Cuban gar, Atractosteus tristoechus, is a lepisosteid and the only luganoi­
iform in the West Indies. It is believed to be most closely related to species 
in the same genus inhabiting North and Central America (17). The oldest lep­
isosteid fossil is early Cretaceous, and fossils of Lepisosteus range back to the 
late Cretaceous (80 mya) in North America and Europe (54). Four species of 
brotulas or cusk-eels (Ophidiiformes) occur in the West Indies and are placed 
in an endemic genus, Lucifuga. They inhabit freshwater sinkholes on Cuba and 
a brackish water cave system in the Bahamas, and they are believed to have had 
a marine origin (17,101). 

The largest component of the West Indian freshwater ichthyofauna (84% of 
species) belongs to the order Cypdnodontiformes. Most of those species are 
in the family Poeciliidae. There is disagreement over the relationships of West 
Indian Gambusia (10 species), although there appear to be at least three species 
groups representing three separate colonizations, most likely from North or 
Central America (17, 106, 150, 151). Species in the endemic Cuban gen­
era Girardinus (8 species) and Quintana (1 species) together form a monophy­
letic group with affinities to Carlhubbsia of Guatemala (151, 156). The endemic 
genus Limia (24 species) and the three species of Poecilia (monophyletic sub­
group) are each believed to represent a single colonization from South America 
(17, 150). There are no documented pre-Quaternary fossil poeciliids, although 
there is an undocumented report of an early Tertiary (Paleocene) fossil from 
Argentina in the literature (137). 

Eight species of killifishes (Cyprinodontidae) are found in the West Indies 
(17; and those subsequently described). Cubanichthys (3 species), a West 
Indian endemic, is believed to have arrived by dispersal from North or Central 
America (17). At least two dispersals from North or Central America, probably 
in the Quaternary, are required to explain the origin of West Indian Cyprin­
odon (5 species). The oldest fossil cyprinodontid is mid-Tertiary (Oligocene), 
although some early Tertiary (Paleocene) scales, possibly belonging to this 
family, exist (137). A single, non-endemic, species of fundulid (Fundulus 
grandis) occurs in northern Cuba; it has affinities to populations in southern 
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Florida. Dispersal from North America during the Quaternary has been postu­
lated to explain its origin (17). Seven species of rivulids (Rivulus) are known 
from the West Indies. Their relationships are not well understood, and there­
fore the number of independent lineages is unknown, although at least two are 
indicated. The rivulids may have arrived by dispersal from South America 
(17). The order Atheriniformes is represented by a single endemic, monotypic 
genus of silverside, Alepidomus, occurring in western Cuba. It is believed to 
be of marine origin (17). A single, non-endemic, species of swamp eel (syn­
branchiform), Ophisternon aenigmaticum, occurs in Cuba. Its distribution in 
South and Central America suggests relatively recent (Quaternary) dispersal. 
The order Perciformes is represented by five endemic species of cichlids in the 
genus Cichlasoma. One of those species is the Miocene C. woodringi from 
Haiti (28); the remaining four are extant. The number of independent lineages 
is not known, but they are believed to have arisen by dispersal from South 
America (17). The oldest cichlid fossil is mid-Tertiary (Oligocene) and is from 
Somalia (137). 

Amphibians 
All West Indian amphibians are anurans (frogs and toads), and they represent 
3.7% of all extant amphibian species. Of the four families and six genera, only 
one genus (Osteopilus) is endemic (Table 3). However, nearly all (99%) of the 
166 native species are endemic, and most (138 species) are in the enormous 
Neotropicalleptodactylid genus Eleutherodactylus (> 520 species). With few 
exceptions, each species is restricted to a single island and often to a small 
area within an island « 100 km2 ; 75). Species diversity is concentrated in the 
Greater Antilles; there are no endemic species in the Bahamas, and only nine 
species are endemic to the Lesser Antilles. The nine independent lineages of 
West Indian amphibians are believed to represent one origin by late Cretaceous 
vicariance and eight independent Cenozoic dispersals from the mainland (74); 

Table 3 Numbers of genera, and species of native West Indian amphibians (all, order Anura)' 

Genera Species 

Familyb Total Endemic % Endemic Total Endemic % Endemic 

Bufonidae 0 0 11 11 100 
Dendrobatidae 0 0 1 1 100 
HyJidae 2 1 50 10 10 100 
LeptodactyJidae 2 0 0 144 142 99 

TOTAL 6 17 166 164 99 

a After Hedges (74). 
"There are no endemic families. 
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the source area for seven lineages is South America, and the other two lineages 
are from Central or South America. 

The West Indian bufonids (Bufo peltocephalus group) represent a mono­
phyletic group (146) among Neotropical species of the cosmopolitan genus 
Bufo, with probable affinities to the Bufo granulosus group of South America 
(27). Albumin immunological distance (ID) data (78) suggested an early Ceno­
zoic origin for this group, probably by dispersal from South America (74). The 
single dendrobatid from Martinique (89) belongs to a diverse genus distributed 
almost entirely in South America (including Trinidad and Tobago). This fact, 
its location in the southern Lesser Antilles, and consideration of albumin ID 
data among dendrobatids (124) together suggest that it arrived by dispersal from 
South America during the Cenozoic (74). 

Several hypotheses for the origin of West Indian hylid frogs have been pro­
posed. Albumin ID data (78) largely supported an earlier hypothesis (46) that 
suggested that the West Indian species (except for one) are monophyletic and 
represent an early Cenozoic origin by dispersal from South America (74) rather 
than six independent colonizations (183). Those data also indicated that a 
single species from Hispaniola, Hyla heilprini, represents a separate invasion 
(dispersal) from South America, but the timing of that event is not known. 

The leptodactylid genus Eleutherodactylus is the largest genus of vertebrates, 
and resolving the origin of the 138 known West Indian species has been a 
formidable challenge. Infrageneric classification largely has been based on 
several key morphological and allozyme characters (73, 107, 108), and much 
of the internal phylogenetic structure of the genus remains to be determined. 
A combination of slow-evolving allozyme loci, albumin ID data, and some 
unconventional morphological characters defined a western Caribbean clade 
(subgenus Euhyas) of 82 mostly terrestrial species and an eastern Caribbean 
clade (subgenus Eleutherodactylus) of 50 mostly arboreal taxa, with a third 
group of six large species (subgenus Pelorius) confined to Hispaniola (66, 73). 
The time of separation between the subgenera Euhyas and Eleutherodactylus 
was estimated to be late Cretaceous (70 ± 6.8 mya), thus agreeing well with a 
proto-Antillean vicariance model (66, 73). However, additional phylogenetic 
data are needed to clarify the origin of the West Indian lineage or lineages 
(74). Aside from two species of South American origin in the southern Lesser 
Antilles (90), there is no evidence that any dispersal events took place from 
the mainland to the West Indies during the Cenozoic. However, a single dis­
persal back to the mainland (probably from Cuba in the mid-Cenozoic) likely 
occurred and led to the subgenus Syrrhophus in Central America and southern 
North America (66, 73). The 17 native Jamaican species, all Euhyas, are a 
monophyletic group that resulted from a single colonization (probably from 
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Cuba) in the Miocene (8, 66, 72). Most species in the southern portion ("South 
Island") of Hispaniola, which was a separate island until the late Miocene, 
also belong to the subgenus Euhyas and apparently had a similar history as 
the Jamaican species (73). After collision with the remainder of Hispaniola 
("North Island"), there was a limited exchange of species between the two 
regions. 

Four species of Leptodactylus represent four independent dispersals to the 
West Indies from South America (or possibly Central America in the case of L. 
insularum). Three of these represent relatively recent (Pliocene or Quaternary) 
arrivals, but the Puerto Rican endemic (L. albilabris) is estimated to have arrived 
40 my a (74, 123). 

Reptiles 
With 449 species (93% endemic), this is the largest component of the West 
Indian vertebrate fauna (Table 4), representing 7.4% of all extant reptiles. There 
are no endemic orders or families, although 9 of the 50 genera are endemic. 
Two genera of lizards, Anolis (138 species) and Sphaerodactylus (80 species), 
account for about one half of the total species diversity. With the possible 
exception of one Cuban species (Cricosaura typica) that may represent an 
ancient vicariant relict, all 68 independent lineages of West Indian reptiles 
are believed to have arrived by overwater dispersal from the following source 
areas: North America (3 lineages), Central America (8 lineages), Central or 
South America (14 lineages), South America (35 lineages), Africa (4 lineages), 
and "New World" (4 lineages) (74). 

The three species of crocodilians represent three separate dispersals in the 
late Tertiary or the Quaternary, apparently from Central and South America 
(74). The relationships of amphisbaenians still are poorly known, although 
albumin ID data (78) together with other data (e.g. 29) suggest the 14 West 
Indian species may comprise a single radiation (74). The origin of that lineage 
or lineages probably was from South America, and the dispersal was estimated 
to have occurred in the early Cenozoic (78). 

West Indian anguid lizards belong to the Neotropical subfamily diploglossi­
nae. Until recently, five genera were recognized, based on osteoderm structure 
(177); four of these were distributed on the islands. Although two of the genera 
(Sauresia and Wetmorena) were restricted to Hispaniola, they were considered 
to be derived from Hispaniolan Celestus (177). Recently, an earlier generic 
arrangement was resurrected and a classical proto-Antillean vicariance sce­
nario postulated to explain the origin of the West Indian species (161). In it, 
the two Hispaniolan endemic genera were considered to be early derivatives 
of Diploglossus. However, albumin ID data (74, 78) support the closer rela­
tionship of those genera to Hispaniolan Celestus. Moreover, albumin ID data 
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Table 4 Numbers of genera and species of native West Indian reptilesa 

Genera Species 

Order and familyb Total Endemic % Endemic Total Endemic % Endemic 

Crocodylia 
CrocodyJidae 0 0 3 33 

Squamata 
Amphisbaenians 

Amphisbaenidae 0 0 14 14 100 
Lizards 

Anguidae 2 0 0 22 22 100 
Gymnophtha1midae 2 0 0 3 1 33 
Iguanidae 5 2 40 172 169 98 
Gekkonidae 7 0 0 97 89 92 
Scincidae 1 0 0 2 50 
Teiidae 4 0 0 24 20 83 
Xantusiidae 100 100 

Snakes 
Boidae 3 0 0 11 9 82 
Co1ubridae 15 6 40 46 42 91 
Elapidae 0 0 1 0 0 
Leptotyph1opidae 0 0 8 6 75 
Tropidophiidae 0 0 13 13 100 
Typhlopidae 0 0 24 24 100 
Viperidae 0 0 2 2 100 

Testudines 
Emydidae 0 0 4 4 100 
Kinosternidae 0 0 1 0 0 
Testudinidae 0 0 0 0 

TOTAL 50 9 18 449 418 93 

a After Hedges (74). 
bThere are no endemic families. 

indicate a mid-Cenozoic origin, by dispersal, for the West Indian species (74, 
78). Three species of gymnophthalmids represent independent colonizations 
of the West Indies from South America. Two of those (Bachia heteropus and 
Gymnophthalmus underwoodi) almost certainly dispersed in the Quaternary, 
whereas the time of arrival for the third lineage (G. pleei) is unknown, although 
it was most likely during the Cenozoic (74). Iguanid lizards have inhabited the 
West Indies at least since the early Miocene, but the exact number of coloniza­
tions is not known. There is broad agreement over the definition of species 
groups and series of anoline lizards, but the higher-level relationships have not 
been determined despite considerable study with morphological, chromosomal, 
and molecular data (e.g. 19,68, 169, 187, 188, 198). An attempt at synthesis 
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of disparate sources of published data for anoline lizards (62) was unsuccessful 
(26, 63, 190). 

Despite the current lack of consensus regarding anoline relationships, evi­
dence for the timing of their arrival to the West Indies, from albumin ID data, 
supports an arrival by dispersal in the mid-Cenozoic (16-36 mya) from Cen­
tral or South America (74). This timing is concordant with the fossil evidence 
noted above and contradicts speculation (62, 158) that their origin was the re­
sult of proto-Antillean vicariance. Future resolution of relationships will help 
determine the number of independent colonizations that occurred. Besides the 
anoline lizards, eight additional colonizations by iguanids to the West Indies can 
be identified, occurring in the Quaternary. Two exceptions are endemic genera 
that apparently arrived in the mid-Cenozoic from Central or South America 
(Cyclura) and North America (Leiocephalus), respectively (74). 

The West Indian gekkonid lizards represent 11 independent colonizations, 
primarily from South America and Africa and mostly in the Quaternary (74). 
Of special note is the large genus Sphaerodactylus (80 species). Analysis 
of allozyme and albumin ID data led Hass (64) to postulate a South American 
origin for the West Indian species by dispersal in the mid-Cenozoic. This timing 
is in agreement with the presence of the genus in Dominican amber (9, 142). 
A recent DNA sequence analysis of relationships among Sphaerodactylus (65) 
identified several well-supported monophyletic groups in the West Indies and 
refined the classification of the genus but did not alter that hypothesis for the 
origin of the West Indian species. However, additional data are needed for all 
species, including those in the mainland lin eo latus section (10 species), before 
the number or direction of dispersal events can be accurately determined. An 
origin for the mainland species by dispersal from the West Indies cannot yet be 
ruled out. 

Only a single endemic scincid lizard is present in the West Indies. A pos­
sible relationship with a South American species in the same genus (Mabuya) 
suggests an origin by dispersal from that continent. At least eight independent 
lineages of teiid lizards are present, and most arose by dispersal from South 
America in the Quaternary. The relationships of the 20 endemic species of 
Ameiva (considered to be one lineage) are not yet established, but albumin ID 
data suggest a mid-Cenozoic origin by dispersal from Central or South America 
(74,78). 

The single endemic xantusiid lizard, Cricosaura typica, represents a bio­
geographie enigma because of its restricted distribution in an unexpected lo­
cation: the Cabo Cruz region of eastern Cuba. Although analysis of some 
published morphological data supported a close relationship with Lepidophyma 
of Central America (32), several key morphological characters in that study 
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were found to be incorrectly scored, thus putting that conclusion into question 
(76). Instead, DNA sequence data provided statistical support for the basal po­
sition of Cricosaura within the family (76, 77), and this was further supported 
by chromosome evidence (67). The presence of Middle Paleocene xantusiid 
fossils from North America (50) suggests an early isolation, perhaps by proto­
Antillean vicariance, for Cricosaura. However, a more recent dispersal to the 
West Indies, and subsequent extinction of the mainland source population, can­
not be ruled out due to the relictual nature of xantusiid lizard distribution (6, 74, 
77). No albumin ID data are available for these xantusiid lizards. 

A single vertebra records the presence ofboid snakes in the West Indies by the 
early Miocene (114). Of the four independent lineages now present, only one 
(Epicrates) contains endemic species (74). There is one mainland species in 
that genus, and the nine West Indian species are believed to form a monophyletic 
group (93, 182). Although proto-Antillean vicariance was postulated to explain 
the origin of the West Indian species (94), a low albumin ID between Epicrates 
and Boa (37), corresponding to a divergence time of about 22 mya, argues 
instead for a mid-Cenozoic origin by dispersal (74). 

Colubrid snakes colonized the West Indies at least 11 times, mostly from 
South America and mostly in the late Cenozoic (74). Of special note is the large 
assemblage (33 species) of alsophines, including six endemic genera. Three 
dispersals from the mainland were proposed to explain their origin, based on a 
morphological analysis (115). However, albumin ID data are more suggestive 
of a single, monophyletic group (22, 78). Those same data, and others (23), 
also indicate a mid-Cenozoic origin by dispersal from South America (74). The 
recent suggestion (31) that the North American genus Farancia is "internested" 
among West Indian alsophines is not supported by the strict consensus tree of 
that same study, and it is contradicted by albumin ID data (24), indicating that 
Farancia is not closely related to alsophines. 

A single (nonendemic) species of elapid snake is recorded from Isla de Provi­
dencia off the coast ofNicaragu~. Its origin likely was by dispersal from Central 
America in the Quaternary (74). Four independent colonizations of the West 
Indies by leptotyphlopid snakes are believed to have occurred (74). Relation­
ships of species in this family are poorly known and in need of study, but the 
five endemic species of the bilineata group are believed to represent a single 
colonization and radiation (181). A single Bahamian species, L. columbi, may 
represent a separate colonization, perhaps from South America in the late Ter­
tiary or Quaternary (74). The snake family Tropidophiidae is Neotropical, and 
the genus Tropidophis is primarily West Indian. An origin by dispersal from 
South America in the early to mid-Tertiary is indicated by albumin ID data (74, 
78). Most West Indian typhlopid snakes are believed to form a monophyletic 
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group (20 species) with African affinities, whereas the remaining four species 
are believed to represent a single group with New World affinities (180). How­
ever, albumin ID data suggest a closer relationship between those two lineages 
and an origin by dispersal in the Cenozoic (74, 78). Two species of viperid 
snakes are endemic to islands in the southern Lesser Antilles. Consideration of 
their distribution, affinities (100), and albumin ID data among related species 
(25) suggests that they arrived by dispersal from South America in the late 
Tertiary or Quaternary (74). 

The Antillean genus of emydid turtles (Trachemys) has a single non-West 
Indian species, T. scripta (165). There are no albumin ID data, but consideration 
of the fossil record, distribution, and relationships suggests a single dispersal 
from Middle or North America in the mid- to late Cenozoic, with a reverse 
dispersal leading to T. scripta on the mainland (74, 165, 165a). The single, 
non-endemic kinosternid turtle species occurring on islands adjacent to Central 
America probably arrived by dispersal in the Quaternary. It is unknown whether 
the Miocene pelomedusid turtles inhabited freshwater or saltwater, and little 
is known of their origin (74, 112a, 114). The single extant testudinid turtle is 
not endemic; it likely arrived by dispersal in the Quaternary. Fossils of giant 
species in this family are known from the West Indies, but their time of origin 
and source area are not known. 

Birds 
There are 15 orders and 49 families of native West Indian birds representing 
about 4.4% of the world's bird fauna, although endemism is relatively low 
(Table 5). One family (Todidae) out of 49 (2%), 38 of the 204 genera (19%) 
and 150 of the 425 species (35%) are endemic to the West Indies. There 
never has been a comprehensive treatment of the historical biogeography of 
West Indian birds, although some general patterns have been discussed (10, 
97, 134). Also, the phylogenetic relationships of many West Indian endemic 
groups remain poorly known, limiting biogeographic inferences (92, 125, 166) 
or tests of ecological models (51, 152, 153, 179). 

Notwithstanding the limitations of the avian database, it has been postulated 
that the origin of the entire West Indian avifauna was by dispersal, largely 
from North America (10, 134), except for the avifauna of the southern Lesser 
Antilles, which appears to be mostly South American in derivation (49). The 
single endemic family, the Todidae, is believed to be the oldest lineage in 
the West Indies, having arrived from North America in the Oligocene; this 
theory is based on mainland fossils (134), but also some known from France. 
Each of the 275 non-endemic species represents at least one separate dispersal 
from the mainland, most likely in the Quaternary. However, that number is 
almost certainly an underestimate based on the finding of complex and multiple 
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colonization patterns in some well-studied species (92, 166). The remaining 
150 endemic species represent fewer than that number of colonizations, but the 
actual number of independent lineages presently is unknown. 

Mammals 
There are 5 orders and 16 families of native West Indian mammals representing 
about 3.1 % ofthe world's mammal fauna (Table 6). Four families, 38 ofthe 65 
genera (58%), and 116 of the 145 species (80%) are endemic to the West Indies. 
Although all West Indian vertebrate groups have suffered at least some human­
caused extinctions, mammals have, by far, suffered the most. Almost 90% of 
the known species of nonvolant West Indian mammals went extinct during the 
last 20,000 years (129). Climatic changes related to the Pleistocene glaciations 
are believed to have caused some extinctions (149), while Amerindians and 
Europeans both have been implicated in other extinctions (129). Phylogenetic 
relationships are still not well established, but at least 51 independent lineages 
can be identified: 9 for nonvolant species and 42 for bats (129). Of those, the 
nonvolant mammals show a strong South American influence (7 lineages) with 
only one lineage showing affinities to Central America and one to Central or 
North America. Bats, on the other hand, show a greater influence from the 

Table 5 Numbers of families, genera, and species of native West Indian birds' 

Genera Species 

Order FamiIiesb Total Endemic % Endemic Total Endemic % Endemic 

Craciformes 0 0 0 0 
Galliformes 1 0 0 0 0 
Anseriformes 2 6 0 0 20 1 5 
Piciforrnes 7 2 29 12 9 75 
Trogoniformes 1 100 2 2 100 
Coraciformes 2 2 50 7 5 71 
Cuculiformes 2 4 2 50 10 6 60 
Psittaciforrnes 3 0 0 13 11 85 
Apodiformes 4 0 0 7 2 29 
TrochiIiformes 10 5 50 17 14 82 
Strigiformes 4 10 2 20 16 6 38 
Columbiformes 1 6 17 17 10 59 
Gruiformes 3 3 1 33 13 1 8 
Ciconiiformes 18 59 0 0 104 3 3 
Passeriformes 10 87 23 26 185 80 43 

TOTAL 49 204 38 19 425 150 35 

a After Bond (11); with subsequent taxonomic changes and classification of Sibley and Ahlquist (170) and Sibley and 
Munroe (171). 

bThe Todidae (Coraciiformes) is the only endemic family. 
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Table 6 Numbers of genera and species of native West Indian mammals' 

Genera Species 

Order and family Total Endemic % Endemic Total Endemic % Endemic % Extinct 

Edentata 
Megalonychidae 11 11 100 18 18 100 100 

Insectivora 
Solenodontidaeb 100 4 4 100 25 
Nesophontidaeb 100 8 8 100 100 

Chiroptem 
Emballonuridae 0 0 0 0 0 
Noctilionidae 1 0 0 1 0 0 0 
Mormoopidae 2 0 0 8 6 75 25 
Phyllostomidae 18 8 44 27 16 59 11 
Natalidae 1 0 0 4 2 50 0 
Vespertilionidae 5 0 0 9 4 44 0 
Molossidae 4 0 0 8 1 13 0 

Primates 
Cebidae 4 2 50 4 4 100 100 
Callitrichidae 100 2 2 100 100 

Rodentia 
Echimyidae 4 4 100 7 7 100 100 
Capromyidaeb 8 8 100 34 34 100 61 
Heptaxodontidaeb 4 4 100 5 5 100 100 
Muridae 2 50 8 8 100 100 

TOTAL 68 41 60 148 119 80 54 

• After Baker and Genoways (4), Jones (88), Koopman (95), MacPhee and lturralde-Vinen! (112a), Wilson and Reeder (192), 
and Woods (195). 

bEndernic family. 

west: 18 lineages from Central America, 14 from South America, and 2 from 
North America. 

All West Indian (and other) ground sloths are extinct, although some ap­
parently were contemporaneous with Amerindians as recently as 3715 years 
ago (129). The West Indian species all belonged to the family Megalonychi­
dae, which was distributed in North and South America and first appears in 
the fossil record in the Lower Oligocene of Puerto Rico (112a). Relationships 
among the species of megalonychids are not well known, although recent stud­
ies (112, 112a, 195) have supported an earlier suggestion (117) that the West 
Indian species likely arose by a single dispersal from South America in the 
mid-Tertiary. A continuously exposed Oligocene land bridge (Aves Ridge) 
was proposed to explain that dispersal event (112). However, geologic evi­
dence favors only a small chain of islands, if up to 1000 m of subsidence is 
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taken into account (83). Also, if a dryland connection occurred, it must be 
explained why groups that were present in South America at that time (e.g. 
marsupials, notoungulates, and astrapotherians among mammals; and many 
groups of amphibians and reptiles) did not come across and are not represented 
in the later fossil record or among extant fauna. Moreover, the fossil discovery 
of a marine ground sloth (35) indicates that saltwater dispersal probably would 
not have been a problem for these animals. Thus, the origin of West Indian 
ground sloths probably was the result of a single overwater dispersal from South 
America in the mid-Tertiary, possibly using the Aves island arc as "stepping 
stones." 

Both families of West Indian insectivores, Solenodontidae and Nesophonti­
dae, are endemic. Although none of the eight known species of nesophontids 
is extant, most became extinct in post-Columbian times (129). The surviving 
solenodontids are reduced in numbers and approaching extinction (196). Re­
constructing the biogeographic origin of insectivores in the West Indies has 
proven to be difficult because of the present lack of consensus regarding rela­
tionships ofthe families of insectivores (21, n 3), although the two West Indian 
families often are considered closest relatives (109) and the result of a single 
colonization event (129). A late Mesozoic origin by Proto-Antillean vicariance 
has been suggested (109, 110) and is compatible with the age (late Cretaceous) 
of insectivore fossils from North America (178). However, it also has been 
noted that the presence of insectivores on Ile Tortue (separated from Hispaniola 
by deep water) and in the Cayman Islands is evidence that they were capable 
of dispersing over salt water (195). No molecular data are available that would 
permit time estimations for the origin of these two families in the West Indies. 
However, some amber-encased bones believed to be of an insectivore recently 
were reported from the Dominican Republic (lIla), which would establish 
their presence in the West Indies by 20-30 mya. 

Seven families of bats are known from the West Indies (Table 6). There are 
no endemic families, and only 8 ofthe 32 genera (25%) and 29 ofthe 58 species 
(58%) are endemic. The number of species on each island is partly correlated 
with island area (59), but it also is related to distance from mainland source 
areas (4). Bahamian species are derived entirely from the West Indian fauna 
(almost all from Cuba) rather than from Florida (127), and those in the southern 
Lesser Antilles (e.g. Grenada) are derived from South America. It has been 
emphasized in the past that much of the West Indian bat fauna was derived from 
Central America (e.g. 95, 195). This is true for the non-endemic Jamaican and 
Cuban species (4, 95) but the Lesser Antillean bat fauna is largely derived from 
South America (15). The total number of known colonizations (N = 42) for all 
West Indian bats, including those from Grenada, reflects the different origins 
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for the Greater versus Lesser Antillean bat faunas: 18 from Central America, 
14 from South America, 2 from North America, and 8 of undetermined source 
(88, 95, 129, 192). However, the origin of the lineages leading to the endemic 
Antillean genera has yet to be determined (4, 59). 

The low level of endemism in West Indian bats is almost certainly the result of 
their enhanced dispersal abilities compared with nonvolant vertebrates: "most 
bats hardly need a raft" (4). Late Pliocene or Quaternary dispersal can be 
assumed for all non-endemic species (4). The time of origin for the remainder 
of the bat fauna is difficult to determine, because no pre-Quaternary West Indian 
fossils exist, and the bat fossil record, in general, is poor (178). No pre­
Quaternary fossils exist anywhere for noctilionids, mormoopids, or natalids, 
whereas the earliest phyllostomid is Middle Miocene, and vespertilionids and 
molossids first appear in the mid-Eocene (178). Although drawing inferences 
concerning divergence times from the fossil record is subject to sampling biases 
(116), there is no evidence (e.g. an endemic family) of ancient lineages of bats 
in the West Indies that may have arisen by late Cretaceous vicariance. Thus, 
the best explanation for the origin of the endemic West Indian bat fauna is by 
dispersal during the middle or late Cenozoic. 

Two families of primates are known from the Tertiary and Quaternary fossil 
record of the West Indies, but there are no extant species (112a, 195). The 
Hispaniolan cebid is thought to have affinities with South American species in 
the genus Cebus (196). One of the two Cuban cebids, Ateles jusciseps, probably 
was introduced in historical times (112a, 129). The species Xenothrix mcgregori 
occurred on Jamaica and is believed to have had South American affinities; it 
has been placed both in the Callitrichidae (53, 191) and its own monotypic 
family Xenotrichidae (111, 128). The remaining West Indian primate material 
is insufficient to clearly infer taxonomic position or affinities (52, 128, 129, 
195). 

The oldest cebid and callitrichid fossils are Lower Miocene and Middle 
Miocene, respectively (112a, 178). Ifthe divergence between Old World and 
New World monkeys occurred about 55 mya, considering sampling biases 
(116), then the split between the cebids and callitrichids must have occurred 
more recently (55-20 mya); this would provide an upper bound on the time 
of origin for lineages within either family. Considering these constraints, the 
origin of West Indian primates is best explained by at least two independent 
overwater dispersals from South America during the middle or late Cenozoic. 

Of the four families of native rodents known to have existed in the West 
Indies, only one (Capromyidae) is extant (194). The greatest generic and species 
diversity is seen in the three hystricognath families: Echymyidae, Capromyidae, 
and Heptaxodontidae. Echymyids show their greatest generic diversity on 
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Puerto Rico, but they also are known from Hispaniola and Cuba. Capromyids 
are not known from Puerto Rico but occurred on Hispaniola (where they show 
their greatest generic diversity), Cuba, the Cayman Islands, Jamaica, and the 
Bahamas. The giant hutias (heptaxodontids), some as large as 200 kg (7), are 
known from the northern Lesser Antilles, Puerto Rico, Hispaniola, and Jamaica. 

Based on phylogenetic relationships and distribution, it has been proposed 
that all West Indian hystricognath rodents form a monophyletic group and 
owe their origin to a single overwater dispersal from South America in the 
late Oligocene or early Miocene (194). The initial disperser was believed to 
be a heteropsomyine echymyid, which colonized and diversified on Puerto Rico, 
later dispersing to Hispaniola and Cuba. A lineage of that initial Antillean 
radiation on Hispaniola, in turn, is thought to have led to the radiation of 
capromyids. Finally, the heptaxodontids are believed to have arisen from a 
capromyid ancestor on Hispaniola (194). If that hypothesis is correct, then 
perhaps the West Indian echymyids (Heteropsomyinae) and heptaxodontids 
should be placed in the Capromyidae. A different scenario involving more than 
one dispersal ofhystricognaths to the West Indies also has been proposed (136). 

West Indian sciurognaths are represented by two genera and eight species 
of murids, all extinct. Except for a single species from Jamaica, they are 
known only from the Lesser Antilles (194). The several species of Oryzomys 
are thought to represent two dispersals to the West Indies in the late Pliocene 
or Pleistocene: one from Central America leading to the Jamaican species O. 
antillarum, and the other from South America leading to the Lesser Antillean 
species. The several species of Megalomys are believed to represent one dis­
persal from South America in the late Pliocene or Pleistocene (194). 

GENERAL PATTERNS 

J<nowledge of the diversity and phylogeny of West Indian vertebrates remains 
incomplete, but sufficient data are available now to draw some conclusions 
regarding the origin of the fauna. The general pattern that emerges is an origin 
by dispersal during the Cenozoic for an overwhelming majority (99%) of the 
independent lineages. In addition, the source area for a large fraction (66%) of 
the nonvolant vertebrate fauna is South America rather than the closer mainland 
areas of North America (16%) and Central America (11 %) (Table 7). If fish 
are removed, this pattern is even more pronounced. Such a dispersal pattern 
can be explained by the nearly unidirectional current flow from the southeast 
to the northwest (18, 61), bringing flotsam from the mouths of South American 
rivers (e.g. Amazon, Orinoco) to the islands of the West Indies. 

In contrast, the primary source areas for the freshwater fish and volant groups 
are North and Central America, suggesting that this difference lies in the mode 
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of dispersal: passive (flotsam) versus active (swimming and flying). Passive 
dispersers must rely on the surface currents to transport them, whereas active 
dispersers such as fish, bats, and birds have more control over their direction and 
speed of movement. Although air currents reaching the West Indies are mostly 
from the northeast, which might explain an origin from peninsular Florida for 
the volant fauna, this would not explain the large number of bat and bird lineages 
derived from Central America, or the Antillean derivation of the Bahamian bird 
and bat faunas. A more likely explanation for the origin of the fish and volant 
faunas involves a simple distance effect, with dispersal over shorter distances 
being favored. During Pleistocene sea-level lows, Cuba was nearly in contact 
with the exposed Great Bahama Bank, and Jamaica was much closer to Central 
America via the exposed Nicaraguan Rise, facilitating active dispersal. The 
other Bahamian vertebrate groups also show a derivation from the Antilles 
rather than from North America, which may be the result of both short distance 
and northward flowing water currents. However, the relatively low levels of 
endemism in the Bahamas probably reflect an origin following the Pleistocene 
high sea levels, when most or all of the Bank was submerged. 

Evidence for this general pattern comes from a diversity of sources. The 
unusual taxonomic composition of the West Indian vertebrate fauna, with re­
duced higher-taxon diversity, always has favored overwater dispersal, and the 
growing Tertiary fossil record has yet to alter that conclusion. Evidence that 
this "unbalanced" fauna is not an artifact of an incomplete fossil record is found 
in the morphologies and ecologies of lineages that have radiated in the West 

Table 7 The origin of West Indian vertebratesa 

Mammals 
Fish Amphibians Reptiles Birdsb Bats Other Total 

Mechanism: 
Dispersal 16 8 67 425 42 8 566 
Vicariance 0 0 0 0 0 1 
Undetermined 0 0 0 3 

Source 
South America 6 7 35 14 7 69 
Central America 0 0 8 18 1 27 
North America 9c 0 3 2 1 15 
Other 2 0 4 0 0 6 
Undetermined 0 2 18 0 0 20 

"Shown are the numbers of independent lineages. 
hThe exact number of lineages is not known for birds; there are at least 300 and probably more than 500 

independent colonizations (see text). The predominate source area for West Indian birds is North America, 
but the specific number of lineages from each source area is not known. 

C Some of these lineages may have arrived from Central America (see text). 
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Indies. For example, the ground sloths and hystricognath rodents underwent 
unusually large radiations, filling niches normally occupied by primates, squir­
rels, porcupines, and ungulates (129, 195). And the absence of carnivores is 
believed to be responsible for the evolution of giant raptorial birds, now extinct, 
in the West Indies (134). Additional examples are found among the amphibians 
and reptiles. The primary source area for nonvolant colonists, South America, 
agrees with long-established current patterns, and the widely scattered Ceno­
zoic dates of origin estimated by molecular data (74, 78) are concordant with a 
random mechanism such as overwater dispersal. 

The large number of claims in the literature of an origin by vicariance is 
remarkable considering that geologists have not been able to establish a clear 
pattern of area relationships for the proto-Antilles (42), and that congruence 
of multiple phylogenies also can be attributed to concordant dispersal (79). 
In fact, the general pattern proposed here, dispersal on currents coming from 
South America, is such an example of concordant dispersal. 

Some ancient lineages of West Indian vertebrates nonetheless may be present, 
and several candidates are the Cuban gar, frogs of the genus Eleutherodactylus 
(73), the xantusiid lizard Cricosaura (77), and the insectivores (109). The proto­
Antillean land mass required by the vicariance theory cannot be eliminated on 
geological grounds, and indirect evidence suggests that some land areas in the 
Greater Antilles have been above water throughout the Cenozoic. For these 
reasons, vicariance may explain the origin of some lineages of vertebrates. 
However, catastrophic local effects of the K-T bolide impact, especially the 
giant tsunamis, must have resulted in widespread extinctions on any Antillean 
islands that were emergent at the time. For this reason, dispersal in the early 
Tertiary, immediately following the impact, also may explain the presence of 
ancient lineages in the West Indies. 

The idea of the Lesser Antilles being a classic dispersal filter is well sup­
ported by the different distances that South American groups have extended 
up the chain (102, 103). For example, the faunal break for eleutherodactyline 
frogs occurs between St. Lucia and St. Vincent (90), whereas the break for 
anoline lizards is between Dominica and Martinique (55). Geologic evidence 
(see above) and the position of faunal breaks for different groups do not support 
the recent suggestion that the northern and southern Lesser Antilles were sep­
arated by a fault between Dominica and Martinique with major biogeographic 
consequences (158). 

Future molecular phylogenetic studies of West Indian vertebrates should 
help to refine time estimates for the origin of independent lineages and more 
accurately determine source areas. Also, as the geological evolution of the 
Caribbean region becomes better known, it should be possible to examine the 
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influence of intra-Caribbean tectonic events on organismal evolution. At least 
one such event, the fusion that resulted in the present-day island of Hispaniola, 
appears to have had an impact on some of the fauna (73). Additional fossils, 
especially from the Tertiary, will give a better estimate of the taxonomic com­
position of the early vertebrate fauna and its bearing on biogeographic models. 
Although the recent trend in historical biogeography has been to focus on only 
one element of information, phylogeny, the integrative approach provides a 
better explanation of the geographic distribution of organisms through time. 
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