
Undersampling Genomes has Biased Time and Rate Estimates
Throughout the Tree of Life

Julie Marin*,1,2 and S. Blair Hedges1

1Center for Biodiversity, 502 SERC Building, Temple University, Philadelphia, PA
2Institut de Syst�ematique, Evolution, Biodiversit�e UMR 7205, D�epartement Syst�ematique et Evolution, Mus�eum national d’Histoire
naturelle, Sorbonne-Universit�es, Paris Cedex 05 75231, France

*Corresponding author: E-mail: juliemarin46@gmail.com.

Associate editor: Koichiro Tamura

Abstract

Genomic data drive evolutionary research on the relationships and timescale of life but the genomes of most species
remain poorly sampled. Phylogenetic trees can be reconstructed reliably using small data sets and the same has been
assumed for the estimation of divergence time with molecular clocks. However, we show here that undersampling of
molecular data results in a bias expressed as disproportionately shorter branch lengths and underestimated divergence
times in the youngest nodes and branches, termed the small sample artifact. In turn, this leads to increasing speciation
and diversification rates towards the present. Any evolutionary analyses derived from these biased branch lengths and
speciation rates will be similarly biased. The widely used timetrees of the major species-rich studies of amphibians, birds,
mammals, and squamate reptiles are all data-poor and show upswings in diversification rate, suggesting that their results
were biased by undersampling. Our results show that greater sampling of genomes is needed for accurate time and rate
estimation, which are basic data used in ecological and evolutionary research.
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Introduction
The evaluation of evolutionary rates has taken a central place
in evolutionary biology. These include micro-evolutionary
rates such as those of nucleotide and amino acid substitution
(Nei and Kumar 2000) as well as macro-evolutionary rates
such as those of speciation, extinction, and diversification
(speciation minus extinction) (Ricklefs 2007). All of these
rates rely on estimates of molecular change (number of sub-
stitutions per site per unit time) being reliable and unbiased,
whether the estimation of nucleotide substitution is the tar-
get of analysis or the data for the estimation of time. However,
recently it was shown that rates can be biased when the
number of variable sites is too small, causing underestimates
of time and leading to an upturn in speciation, or diversifica-
tion, rate towards the present (Hedges et al. 2015, Marin et al.
2017).

This “small sample artifact” is caused by the reduction
of signal and increasing coarseness of the data available to
estimate low sequence divergence values. It is a sampling
bias that stems from the fact that any given study usually
only samples (once) a small part of the entire genome. As
zero is approached in true sequence divergence, it is then
increasingly likely that rare variable sites will be omitted,
underestimating divergence. The bias is negligible in the
largest data sets and for the highest divergence estimates
(deepest nodes) in most trees, but it is likely to be evident
in small data sets or as estimates approach zero (shallow
nodes) in any data set.

Many studies with large taxonomic coverage, including
widely used tetrapod timetrees, have reported a rate increase
towards the present and many have ascribed biological sig-
nificance to it (Bininda-Emonds et al. 2007; Pyron and Wiens
2011; Jetz et al. 2012; Pyron et al. 2013; Claramunt and
Cracraft 2015; Nürk et al. 2015) (fig. 1). Considering that the
small sample artifact can produce the same pattern, and that
most of these studies had large fractions of missing data and a
relatively small number of variable sites, we raise the possibil-
ity here that those rate increases were artifacts, not of bio-
logical significance. If true, the hundreds of evolutionary
studies that have used the results of those major tetrapod
studies, in turn, may have been impacted by the artifact.

In two previous studies focused on building a timetree of
eukaryotes and prokaryotes (fig. 1), we drew attention to this
artifact (Hedges et al. 2015) and conducted analyses to un-
derstand it (Marin et al. 2017) using the time estimation
method RELTIME (Tamura et al. 2012). Here, we present a
more expanded study, taxonomically and methodologically,
to further explore the scope and implications of the small
sample artifact, with the widely used estimation method
BEAST (Drummond et al. 2012). We evaluate the pairwise-
distances and the evolutionary rate patterns of simulated and
empirical data-poor and data-rich timetrees. Finally, we re-
view the large empirical studies of tetrapods to determine if
the results of those studies could be alternatively, or at least in
part, explained by the small sample artifact. We conclude that
this statistical artifact probably has had a wide impact across
evolutionary and ecological studies that made use of
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molecular data to estimate divergence times, tree branch
lengths, and rates of molecular change.

Results

Simulations
We simulated alignments of different lengths, corresponding
to birth-death model trees of different sizes, using model
parameters derived from empirical vertebrate sequence
data (Supplementary Materials). We estimated divergence
times with the program BEAST v. 1.8.3. (Drummond et al.
2012) from the simulated alignments. Theoretically, a con-
stant speciation or diversification rate through time is
expected under a birth-death model. However, we detected
increasing speciation rate through time in our simulations.
Those data sets with the fewest variable sites, the most miss-
ing data, and greatest number of tips led to the strongest bias
(fig. 2A–C, and supplementary fig. S1, Supplementary Material
online) even when constraining the topology (supplementary
fig. S2, Supplementary Material online). For a 100-tip phylog-
eny, an average of�410 variables sites over 1,000 sites for the
ingroup was enough to correctly estimate speciation rate,
that is, with a deviation in speciation rate from the reference
timetree equal to zero (supplementary fig. S1, Supplementary
Material online). A lower number of variable sites (�81

variables sites on average over 200 sites for the ingroup)
resulted in increasing speciation rate towards the present
and a wider confidence interval. On the other hand, �413
variable sites over 1,000 sites was not enough to correctly
estimate speciation rate of a larger phylogeny with 500 tips
(supplementary fig. S1, Supplementary Material online). A
larger number of variable sites (�830 on average over 2,000
sites for the ingroup) was needed to correctly estimate spe-
ciation rate for a 500-tip tree. For a 1,000-tip phylogeny, an
average of �1,225 variable sites over 3,000 sites for the
ingroup was needed to correctly estimate speciation rate
(fig. 2A). Fewer variable sites (�626 variable sites on average
over 1,500 sites for the ingroup) resulted in an increasing
speciation rate and a larger confidence interval (fig. 2B).
Moreover, missing data influenced speciation rate estimates
in the same way as data-poor alignments (�934 variable sites
on average over 3,000 sites for the ingroup) (fig. 2C).

The comparison of timetree branch length variation be-
tween the simulated and model timetrees revealed shorter
branches for data-poor and data-missing timetrees all along
the trees for unconstrained (fig. 2D–F) and constrained time-
trees (supplementary fig. S3, Supplementary Material online).
For data-missing timetrees, we found a more scattered distri-
bution, with both underestimated and overestimated node
times along the tree (fig. 2F–I), but the major trend was clearly
towards underestimated times as shown by the fitted curves
(fig. 2F). We also found that the program BEAST introduces a
small amount of sequence change, between 2.8e�04 and
1.2e�03, to branches (supplementary fig. S4,
Supplementary Material online), explaining the pairwise dif-
ference increase (fig. 2D–F) and hence the speciation upturn
attenuation near zero (fig. 2B and C). This is not explained in
the BEAST manual, but is probably implemented to avoid
zero-length branches, and also the result of an arbitrary res-
olution of polytomies in Bayesian analyses (Lewis et al. 2005).
For deep nodes, impact of the “BEAST artifact” is small but it
is proportionately larger in shallow nodes, where it causes
deviations amounting to hundreds of percent. Therefore, in
BEAST analyses, both statistical underestimation (small sam-
ple artifact) and program-induced overestimation (BEAST ar-
tifact) of sequence divergence occurs, with the strength and
location of each bias depending on the number of variable sites
(relative to the number of tips) and on the depth of nodes.

To further compare the influence of molecular sampling
on divergence time estimates, we fitted polynomial equations
to data-rich and data-poor pairwise distance proportions for
unconstrained (fig. 2D–F) and constrained trees (supplemen-
tary fig. S3, Supplementary Material online). There was a sig-
nificant difference in their fit to the data in each case, with
data-poor analyses showing a stronger bias than data-rich
analyses, as expected. The data-rich distributions were
better-fitted by the corresponding data-rich polynomial
equations for unconstrained (difference between the two
correlations: P value¼ 0; z¼ 45.86) and constrained trees
(P value¼ 0.02; z¼ 2.26). Similarly, the data-poor distribu-
tions were better fitted by the corresponding data-poor poly-
nomial equations for unconstrained (P value¼ 0; z¼ 56.65)
and constrained trees (P value¼ 0.01; z¼ 2.53). The jackknife
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FIG. 1. Evolutionary rate increases in eukaryotes. Diversification rate
through time of (A) eukaryotes (modified from Hedges et al. 2015),
(B) “prokaryotes” (modified from Marin et al. 2017), (C) amphibians
(timed from Pyron and Wiens 2011), (D) birds (modified from Jetz
et al. 2012), (E) mammals (modified from Bininda-Emonds et al.
2007), and (F) squamates (timed from Pyron et al. 2013). The gray
area represents the 95% confidence interval.
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procedure confirmed these results with significant differences
between the two correlation values in 100% of the cases for
unconstrained data-rich and data-poor distributions, and in
64% and 63% of the cases for the constrained data-rich and
data-poor distributions, respectively.

However, estimated node ages deviate from the true times
in data-rich trees (fig. 2G) even though they do not deviate in
speciation rate (fig. 2A). This might be the consequence of the
binning process of speciation rate analyses, or due to the
stochastic models underlying these analyses. Indeed, different

FIG. 2. Biases in divergence time and speciation rate estimation from undersampling of genomes. Ten alignments of 3,000 nucleotides (data-rich)
and 1,500 nucleotides (data poor) were simulated from 1,000-tip timetrees (model timetrees) and used to estimate divergence times with the
program BEAST (A, B, D, E, G, and H). We created data-missing alignments of 3,000 nucleotides by randomly replacing 70–100% of the nucleotides
of 2,383 sites over 3,000 by missing nucleotides (C, F, and I). (A–C) Deviation of speciation rate through time of 1,000-tip simulations timed with
BEAST. Percentage of rate deviation was estimated by subtracting the speciation rate of the reference timetree from the speciation rate of the
timetrees built with different sequence lengths. The gray area represents the 95% confidence interval for each set of simulations. (D–F) Deviation
percentage of branch length pairwise distance differences between unconstrained timetrees and model timetrees. The red lines correspond to the
fitted polynomial line on data-rich differences and the blue lines correspond to the fitted polynomial line on data-poor differences and on data-
missing differences. (G–I) Branch length pairwise distances comparison with the model timetree of data-rich, data-poor, and data-missing
unconstrained timetrees. The black line represents the regression line through the origin.
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time estimates of nodes can still be in agreement with a
constant speciation rate through time. For most research
applications, that is a concern because accurate estimation
of node age is important, regardless of whether speciation
rate analysis is conducted. Based on our simulation results,
and on terminal branch length and tree length formulas
(Mooers et al. 2012), we find that at least 20 variable sites
are needed to correctly estimate 95% of the terminal branch
lengths (pendant edges), regardless of the speciation and ex-
tinction rates. Also the total number of variable sites needed
to estimate all node ages in a tree increases with tree size and
with the proportion of extinction rate compared with speci-
ation rate (fig. 3). For example, �50,000 variable sites are
needed to estimate node ages of an 800-tip tree with an
extinction rate equal to 85% of the speciation rate.

Empirical Studies
As a further test of the existence of the small sample artifact,
we differentially sampled a vertebrate data-set and found an
increasing speciation rate in data-poor timetrees (supplemen-
tary fig. S5, Supplementary Material online). Truncating the
data set resulted in an increase in speciation rate towards the
present compared with the complete, four-gene data set.
Finally, we compared our simulation results with diversifica-
tion plots from large, global data-sets of tetrapods that used
thousands of species (Pyron and Wiens 2011; Jetz et al. 2012;
Pyron et al. 2013), all containing upturns in diversification rate
towards the present (fig. 1). One study was composed of a
backbone and 129 clades of birds (Jetz et al. 2012). On aver-
age, the clades were defined by 774 variables sites for 154
species (table 1). Over the 26 clades analyzed containing
>100 species, and after removing sites with >30% missing
data, 27% of the clades did not have enough variable sites to
avoid the small sample artifact according to our simulations
(supplementary table S1, Supplementary Material online). For
the two other large data-sets comprising 2,872 species of

amphibians (Pyron and Wiens 2011) and 4,162 species of
squamates (Pyron et al. 2013), only 771 and 0 variable sites
were left, respectively, after removing sites with>30% missing
data (table 1). Because the mammal tree (Bininda-Emonds
et al. 2007) (fig. 1) is a combination of supertrees we were
unable to evaluate this data set in an equivalent way.
However, the data-set used for molecular dating strongly
suggests that the mammal timetree was also influenced by
the small sample artifact. For example, over the 68 molecular
markers used, 24 did not have enough sites according to our
simulations (supplementary table S2, Supplementary Material
online), suggesting that most of this mammal data set
(Bininda-Emonds et al. 2007) is susceptible to the small sam-
ple artifact.

Discussion
Divergence time estimates are used for many purposes
(Hedges and Kumar 2009) and change in diversification rates
are routinely interpreted as an adaptive response to changes
in the environment, including the presence of other organ-
isms. However, our results show that an insufficient number
of variable sites could cause the underestimation of diver-
gence times leading to artificial upturns in speciation (or di-
versification) rates. Given that the most species-rich studies
regularly used to infer rate patterns show upturns in diversi-
fication rates (fig. 1), whereas harboring an insufficient num-
ber of variable sites according to our results, the small sample
artifact likely has had wide-ranging impact across evolution-
ary biology. For example, the four major studies on tetrapod
vertebrates alone (Bininda-Emonds et al. 2007; Pyron and
Wiens 2011; Jetz et al. 2012; Pyron et al. 2013; fig. 1) have
been cited 4,238 times.

Tree nodes are resolved by different combinations of var-
iable sites, with the most recent nodes having the fewest
variable sites. Because there were not enough variable sites
to correctly infer substitution rates of data-poor trees, the
shallowest branch lengths, in particular, were underestimated
(fig. 2D–F). Consequently, node divergences were younger for
data-poor timetrees (fig. 2G–I) explaining the artificial in-
crease in speciation rate towards the recent (fig. 2A–C).
Constraining the topology reduced the bias but did not elim-
inate it (supplementary figs. S2 and S3, Supplementary
Material online), hence the upturn in speciation rate towards
the present, as seen in data-poor timetrees, is an artifact that
can be amplified if it also results in topological errors.
Moreover, the small sample artifact could be the explanation
for higher molecular rates (substitutions per site per unit of
time) of data-poor trees observed in ancient DNA studies and
others involving recent divergences (Debruyne and Poinar
2009), because of shorter branches and hence underestimates
of time.

Elsewhere we have shown (Hedges et al. 2015; Marin et al.
2017) that another widespread bias, the taxonomic artifact,
leads to a downturn in speciation, or diversification, rate to-
wards the present in studies with incomplete sampling of
lineages, regardless of the number of variable sites (fig. 4).
This artifact likely explains the downturn in diversification
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rate near zero observed in studies of amphibians (fig. 1C),
mammals (fig. 1E), and eukaryotes (fig. 1A). Given the bird
lineage trough time plot from Jetz et al. 2012, it was also likely
present in the diversification rate plot for birds (fig. 1D) but
those authors (Jetz et al. 2012) omitted the plot for the last 2.5
My, giving the reason as “difficulty of accounting for ongoing
speciation events.” The taxonomic artifact is a common fea-
ture in diversification studies because of the difficulty in sam-
pling all individuals, populations, and species. For example,
even in a complete species-level study, the absence of any
lineage splits below the species level will be expected to cause
a downturn in diversification rate towards the present, and
this bias will penetrate back into the timetree for several
million years or much more depending on the taxonomic
rank sampled (Hedges et al. 2015). Finally, the sparse node
artifact (fig. 4) occurs when tools incorrectly attribute statis-
tical significance to deviations in speciation rate even when
they are based on node counts as few as two, as we demon-
strated elsewhere (Marin et al. 2017). There are also user-
induced artifacts, such as wide branch length priors leading
to topological errors (Yang and Rannala 2005), or incorrectly
applied calibration constraints or topologies (Springer et al.
2013), that both could cause artificial excursions in molecular

and speciation rates. But we focus here instead on largely
unrecognized artifacts of commonly used data sets and
methods.

Considering all of these potential biases, it is evident that
nearly any change in speciation or diversification rate, in any
given study regardless of data size, could be an artifact (fig. 4).
This implies that many past studies have probably been im-
pacted beyond errors in diversification results because time-
trees are commonly used in biogeography, macro-evolution,
and ecological studies. If many of the speciation rate upswings
and downswings in past studies are artifactual, it may also
mean that evolution is more constant and clock-like than
previously thought (Hedges et al. 2015; Marin et al. 2017),
something that future studies can test with larger data sets.
Moreover, the small sample artifact has broader implications
than just speciation or diversification rate, because it derives
from biased timetrees having overestimates of node ages,
particularly in the shallowest nodes. This would explain the
prominent spike in speciation rate, near the recent, in the
consensus timetree of life derived from thousands of pub-
lished timetrees (Hedges et al. 2015). It also indicates that
conclusions drawn from previous time estimation studies,
especially of recent (Cenozoic) events, may need to be revis-
ited. In addition, if calibrations were applied to biased node
ages then other times in the timetree would, in turn, be
biased.

For instance, the Cenozoic speciation rate increase in birds
has been linked to key morphological and behavioral innova-
tions or environmental opportunities (Jetz et al. 2012).
Similarly for mammals, faunal and environmental changes
have been invoked to explain a rate increase towards the
present (Bininda-Emonds et al. 2007). However, those con-
clusions may not be justified given our simulation results
whereby the small sample artifact created a large 78% rate
deviation in trees with similar parameters as in those two
empirical studies. For example, roughly 60% and 50% of the
rate increase detected in birds and mammals, respectively,
calculated between 60 Ma and present-day, could be
explained by the small sample artifact alone.

Recommending a minimum number of variable sites to
accurately estimate speciation rate is difficult because it scales
among nodes in the tree, with deeper nodes having a greater
number of variable sites. If the outgroup is distant, the basal
node may have nearly all of the variable sites. In addition,
missing data can lead to a complex patchwork of nodes, each
with insufficient sampling of molecular data (Filipski et al.
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FIG. 4. Potential biases on speciation rate estimation. The thick con-
tinuous line represents constant speciation rate as expected if there
are no artifacts or other factors affecting the rate. The small sample
artifact (an insufficient number of variable sites) may impact all of the
tree and diversification plot, resulting in a rate increase towards the
present. The taxonomic artifact (incomplete sampling of taxa or
lineages) also may impact all of the tree and diversification plot
and results in a speciation rate decrease towards the present. The
sparse nodes artifact (stochastic effect of a limited number of nodes)
may impact the beginning of the diversification plot, causing
decreases or increases in rate.

Table 1. Number of Tips and Variable Sites of Empirical Studies Showing Increasing Diversification Rate Through Time.a

Study Number of Tips Number of Variable Sites/Total Number of Sites

Full Alignment <70% Missing Data <50% Missing Data <30% Missing Data

Jetz et al. (2012)b 154 2530/6744 1787/3800 1201/2270 774/1448
Pyron and Wiens (2011) 2872 9018/12712 2493/2615 1349/1410 771/822
Pyron et al. (2013) 4162 10502/12896 3353/3568 618/656 None

aThe percentage of missing data corresponds to alignments for which sites are defined by at most this percentage of ambiguous sites.
bJetz et al. (2012) built and dated a backbone and 129 clades. We analyzed the 26 data sets with >100 tips (supplementary table S1, Supplementary Material online) and
reported the mean results here.
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2014). Branch length heterogeneity also might affect the ac-
curacy of branch length estimation (Schwartz and Mueller
2010). Assuming a tree following a birth-death pattern of
evolution, and given our simulations, at least 400 variable sites
are needed to estimate speciation rate in 100-tip trees, and
1,200 variable sites are needed for 1,000-tip trees. These num-
bers of variable sites are typically found in data sets of 1,000–
4,000 sites, although any type of nonstandard sampling (e.g.,
missing data, high numbers of shallow tips) could require ten
or more times that number of sites. In addition, such recom-
mendations are only for speciation rate.

A much larger number of variable sites is needed for ac-
curate time estimation, and this is probably the major use of
any given timetree. So rather than relying on a universal cutoff
of sites in an alignment, it is best to verify that the shallowest
nodes have a sufficient number (e.g., >20) of variable sites or
nucleotide differences for precise estimates, and to avoid the
small sample artifact. Moreover, because in practice it is dif-
ficult to assess the number of variable sites for pairs of termi-
nal branches, we also provide here the recommended
number of variable sites for the whole alignment (fig. 3).
However, because a large fraction of the sites, between 30%
and 80% (unpublished data), are usually invariant, the total
sequence length should be roughly twice as long as the rec-
ommended number of variable sites. Additionally, diversifica-
tion analysis tools, such as TreePar (Stadler 2013) and BAMM
(Rabosky et al. 2014), need to be improved by incorporating
node-based statistical error, which decreases with increasing
data size (Filipski et al. 2014). This need for improvement
applies also to the sparse-nodes artifact (fig. 4). Other meth-
ods of analyzing diversification rate change (Morlon et al.
2010) are not immune to these artifacts. Furthermore, polyt-
omies can cause spikes in rate and be interpreted as real
evolutionary events, as did happen, for example, with a 30–
33 My speciation rate spike in mammals (Stadler 2011). Also,
polytomies can be resolved arbitrarily with very high posterior
probabilities in Bayesian analyses, leading to erroneous inter-
pretation of lineage relationships, a problem that can be over-
come with the modification of the Metropolis-Hasting
algorithm (Lewis et al. 2005).

The increasing availability of genome-scale data sets will
lessen the impact of the small sample artifact in future stud-
ies. Nonetheless, a greater taxonomic coverage requires a
corresponding increase in the number of variable sites that
may not be satisfied even in the largest phylogenomic data
sets, and especially for recent divergences of hundreds or
thousands of years. Indeed, our results show that a change
in experimental design is needed in molecular phylogenetic
studies. Previously, it was assumed that a data set used for
phylogeny was sufficient for time estimation and speciation
rate analysis. Now it is evident that these three different anal-
yses each have different data set requirements. A small data
set of one or a few genes may be sufficient to build a phylog-
eny with high support values on nodes, even when the data
set has missing data. However, a much larger and cleaner data
set is needed for accurate time estimates (fig. 3), especially of
the shallow nodes. We found that the data size needs of
speciation rate analysis are intermediate between those of

phylogeny and time estimation, probably because of the sto-
chastic flexibility of the underlying models in speciation rate
analyses, buffering individual node age variation. For practical
reasons, researchers will likely choose to sample the genome
more broadly for all analyses.

Materials and Methods

Simulations
We simulated three sets of ten timetrees of 100, 500, and
1,000 tips with the function “sim.bdtree” (geiger package;
Harmon et al. 2008) (b¼ 0.6, d¼ 0.4; 100, 500, and 1,000
tips and one outgroup manually added at 5 My from the
ingroup), referred to as the model timetrees. Two alignments
of different lengths were simulated from each tree, 200 and
1,000 nucleotides for the 100-tip timetrees, 1,000 and 2,000
for the 500-tip timetrees, and 1,500 and 3,000 for the 1,000-tip
timetrees (PhyloSim package; Sipos et al. 2011). To define the
model of DNA evolution for the simulations we used the
parameters estimated by modeltest (function “modelTest”,
package phangorn in R; Schliep 2011) on a vertebrate align-
ment (Marin et al. 2013): model: GTR model; rate matrix:
a¼ 0.203, b¼ 0.029, c¼ 0.026, d¼ 0.048, e¼ 0.023,
f¼ 0.343; base frequencies: 0.244, 0.232, 0.280, and 0.244);
shape parameter a set at 0.4; and proportion of invariable
sites set at 0.28. We recorded the number of variable sites for
each simulated alignment. From the simulated alignments,
the tree construction was performed with RAxML 8.1.11
(Stamatakis 2014), assuming GTR (general time reversible)
model with 1,000 bootstrap replicates. The divergence times
were estimated with the program BEAST v. 1.8.3.
(Drummond et al. 2012). The xml file was created using
BEAUTi (v. 1.8.3) (Drummond et al. 2012) with the following
parameters: GTRþGþI substitution model, relaxed uncorre-
lated lognormal clock; a birth-death process to model speci-
ation events; ten million generations with sampling every
1,000 steps. We used the uncorrelated lognormal clock be-
cause we found no evidence for autocorrelation in our data-
sets. The mean covariances of parent and child branches
ranged between �0.015 and 0.007, and the HPD (highest
posterior density) minimum and maximum intervals ranged
between�0.0637 and 0.05 under the lognormally distributed
model of rate variation. Moreover, this model is the one tra-
ditionally used with the program BEAST. We used one cali-
bration point, ingroup node, at 100 Ma (normal distribution,
mean value: 100, standard deviation: 1). During the timing
process, the topology was unconstrained using the RAxML
tree as the imput tree, or constrained to follow the model tree
topology.

We evaluated the relationship between tip pairwise dis-
tances of the timetrees and the corresponding model trees.
Because the same amount of distance difference could have a
limited importance for deep branches, but make a significant
difference for shallow branches, we calculated the propor-
tional pairwise distances to the branch lengths of the model
tree. We then fitted polynomial curves to the resulting dis-
tributions, and compared the correlation coefficients of the
data-rich and data-poor fitted curves to the data-rich and
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data-poor distributions (paired.r test in R). In order to test the
robustness of our results, we performed a jackknife procedure.
We sampled, without replacement, 20% of each data-set
(data-rich and data-poor proportional pairwise distances)
100 times, and compared, as we did previously, the correla-
tion coefficients of the data-rich and data-poor fitted curves
to the data-rich and data-poor distributions.

Because in many data sets the missing data proportion is
important (table 1), and because missing data represent
undersampling of sites, we evaluated the influence of missing
data on speciation rate for the 1,000-tip timetrees. The num-
ber of missing sites corresponded to the proportion of miss-
ing data of the alignment used in Pyron and Wiens (2011)
where 79.4% of the 12,712 sites have between 70% and 100%
missing data. For the same proportion in our simulation
(3,000 sites), we randomly replaced 70–100% (uniform distri-
bution) of the nucleotides with missing nucleotides (N).

Because an accurately estimated speciation rate does not
imply that all underlying node ages are accurately estimated,
we also evaluated the number of variables sites required to
estimate node ages. For the 1,000-tip model trees we
extracted the terminal branch lengths. After discarding the
smallest 5% of those branches, we recorded the minimum
branch length, representing the minimal length that we want
to be able to estimate from the alignment. We assumed that
one variable site is needed to estimate this minimum branch
length. Then, proportionally, we first determined the number
of variable sites needed to estimate pairs of terminal branch
lengths using the formula for average terminal branch length
from Mooers et al. (2012). Secondly, we determined the num-
ber of variable sites needed to estimate all of the node ages of
a tree using total tree length formula from Mooers et al.
(2012) while varying tree size, speciation rate, and extinction
rate.

Empirical Studies
In order to test the effect of the number of variable sites on
real data, we evaluated the speciation rate pattern of a ver-
tebrate data set (Marin et al. 2013) using one or four genes.
The data set comprised 107 Australian scolecophidian snakes
(Squamata: Serpentes) and 16 outgroups. The four genes that
were sequenced were: cytochrome b (cytb) with 432 variables
sites among 678, prolactine receptor (PRLR) with 379 varia-
bles sites among 483 sites, brain-derived neurotrophic factor
(BDNF) with 188 variables sites among 672, and bone mor-
phogenetic protein 2 (BMP2) with 361 variables sites among
591. The tree construction was performed with RAxML 8.1.11
(Stamatakis 2014), assuming GTR (general time reversible)
model with 1,000 bootstrap replicates. Following Marin
et al. (2013), we treated each codon position of the cytb,
BDNF, LRPR, and BMP2 genes as a separate partition so the
combined data set included 11 partitions (because of satura-
tion, the third position of cytb was excluded).

Divergence times were estimated by the program BEAST v.
1.8.3. (Drummond et al. 2012). The xml file was created using
BEAUTi (v. 1.8.3) (Drummond et al. 2012) with the following
parameters: unlinked substitution and clock models,
GTRþGþI model, relaxed uncorrelated lognormal clock; a

birth-death process to model speciation events; ten million
generations with sampling every 1,000 steps. The RAxML tree
was used as the input tree and we used seven calibrations
(detailed in Marin et al. 2013). The same methodology was
followed to reconstruct the scolecophidian timetree on a
restricted molecular data set, using only the gene BDNF
(105 Australian scolecophidian snakes and 16 outgroups).

Finally, we compared our simulation results with diversifi-
cation plots from large, global data sets of tetrapods that used
thousands of species (fig. 1). Because the eukaryote and mam-
mal timetrees were built from many timetrees by consensus,
we focused on the data sets of aligned sequences for amphib-
ians (2,872 species; Pyron and Wiens 2011), birds (9,993 spe-
cies; Jetz et al. 2012), and squamates (4,162 species; Pyron et al.
2013). The number of variable sites was recorded for the
complete alignment and after the removal of sites with
<70%, 50%, and 30% missing data. The amphibian and squa-
mate data sets were analyzed and dated previously in Hedges
et al. (2015). We estimated here the speciation rate patterns
of these three data sets with BAMM (Rabosky et al. 2014) as
described above. For the amphibian and the squamate trees,
the number of described species (IUCN 2017 and Uetz et al.
2017, respectively) was used to calculate the sampling fraction
parameter. The bird timetree is composed of a backbone and
129 clades. We evaluated the number of variables sites and
the speciation rate pattern as described above for the 26
clades with >100 species [stage 1 data-sets from Jetz et al.
(2012): species with genetic data]. We used the total number
of species after the addition of species without genetic data
[stage 2 data-sets from Jetz et al. [2012]] to calculate the
sampling fraction parameter.

Diversification Analyses
Some concerns have been raised concerning the method
BAMM (Moore et al. 2016), although those criticisms were
later shown to be unfounded (Rabosky et al. 2017). We used
this program to estimate evolutionary rates over time.
Extinction rate estimates are not reliable in phylogenies
that have diversification rate heterogeneity (Rabosky 2010,
2016). For this reason we only estimated speciation rates
over time in our simulations. For the empirical data sets
(amphibians and squamates), we estimated both speciation
and diversification rate plots and found comparable results
(fig. 1 and supplementary fig. S6, Supplementary Material
online).

The BAMMtools package and BAMM program (Rabosky
et al. 2014) were used to estimate evolutionary rate through
time of the simulated and empirical timetrees. The function
“setBAMMpriors” was used to generate a prior block that
matched the “scale” (e.g., depth of the tree) of our data.
Both k and l rates were allowed to vary through time and
across lineages, and MCMC chains were run for
10,000,000,000 iterations. Because the program does not allow
branch lengths equal to zero, we changed the length of these
branches to 1e-07. Timetrees were still ultrametric after the
change; this change is much smaller than the BEAST artifact.
We discarded between 15% and 80% of the MCMC chains to
reach the convergence for the timetrees, which was checked
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by calculating the effective sample size of the log-likelihood
and of the number of shifts events present in each sample
that should be over 200 as recommended by the authors of
the program. Diversification rate plots were obtained with the
function “plotRateThroughTime.”

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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