ZOOTAXA

Phylogenetics, classification, and biogeography of the treefrogs
 (Amphibia: Anura: Arboranae)

WILLIAM E. DUELLMAN ${ }^{1,3}$, ANGELA B. MARION ${ }^{2}$ \& S. BLAIR HEDGES ${ }^{2}$
${ }^{1}$ Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66045-7593, USA
${ }^{2}$ Center for Biodiversity, Temple University, 1925 N $12^{\text {th }}$ Street, Philadelphia, Pennsylvania 19122-1601, USA
${ }^{3}$ Corresponding author. E-mail: duellman@ku.edu

Magnolia Press
Auckland, New Zealand

WILLIAM E. DUELLMAN, ANGELA B. MARION \& S. BLAIR HEDGES
Phylogenetics, Classification, and Biogeography of the Treefrogs (Amphibia: Anura: Arboranae)
(Zootaxa 4104)
109 pp.; 30 cm .
19 April 2016
ISBN 978-1-77557-937-3 (paperback)
ISBN 978-1-77557-938-0 (Online edition)

FIRST PUBLISHED IN 2016 BY

Magnolia Press
P.O. Box 41-383

Auckland 1346
New Zealand
e-mail: magnolia@mapress.com
http://www.mapress.com/j/zt
© 2016 Magnolia Press
All rights reserved.
No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.

This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
ISSN 1175-5326 (Print edition)

ISSN 1175-5334 (Online edition)

Table of contents

Abstract 4
Resumen 4
Resumo 4
Introduction 5
Material and methods 5
Classification 7
Arboranae new taxon. 7
Family Hylidae Rafinesque, 1815 8
Subfamily Acridinae Mivart, 1869 10
Hyliola Mocquard, 1899 10
Pseudacris Fitzinger 1843. 11
Subfamily Hylinae Rafinesque, 1815 17
Sarcohyla new genus 18
Plectrohyla Brocchi, 1877 19
Bromeliohyla, Duellmanohyla, and Ptychohyla 19
Rheohyla new genus 19
Ecnomiohyla Faivovich, Haddad, Garcia, Frost, Campbell, and Wheeler, 2005 21
Hyla Laurenti, 1768 22
Dryophytes Fitzinger, 1843 23
Subfamily Pseudinae Fitzinger, 1843 23
Subfamily Dendropsophinae Fitzinger, 1843 24
Subfamily Lophyohylinae Miranda-Ribeiro, 1926 24
Subfamily Scinaxinae New Subfamily 25
Sphaenorhynchus Tschudi, 1838 26
Ololygon Fitzinger, 1843. 26
Julianus new genus 28
Scinax Wagler, 1830 28
Subfamily Cophomantinae Hoffmann, 1878 29
Colomascirtus new genus 30
Hyloscirtus Peters, 1882 31
Family Phyllomedusidae Günther, 1859 32
Pithecopus Cope, 1866 32
Callimedusa new genus 33
Phyllomedusa Wagler, 1830 33
Hylomantis Peters, 1873 35
Agalychnis Cope, 1864 36
Family Pelodryadidae Günther, 1859 36
Subfamily Pelobiinae Fitzinger, 1843 37
Litoria Tschudi, 1838 37
Subfamily Pelodryadinae Günther, 1859 39
Nyctimystes Stejneger, 1916 39
Dryopsophus Fitzinger, 1843 40
Biogeography 41
The Historical Landscape 41
Cretaceous Frogs 43
Tertiary Fossils 44
A Timeline for Treefrog Evolution 44
Pelodryadidae 46
Phyllomedusidae 51
Hylidae. 51
Hylidae: Scinaxinae 51
Hylidae: Cophomantinae 51
Hylidae: Lophyohylinae 52
Hylid Frogs in the Greater Antilles 52
Hylidae: Dendropsophinae 53
Hylidae: Pseudinae 53
Hylidae: Hylinae 53
The American Interchange 54
Holarctic Hylinae 56
Acridinae 57
Species Density and Endemism 57
Biogeographic Summary 59
Discussion 59
Acknowledgments 62
References 63
Appendix 1 74

Abstract

A phylogenetic analysis of sequences from 503 species of hylid frogs and four outgroup taxa resulted in 16,128 aligned sites of 19 genes. The molecular data were subjected to a maximum likelihood analysis that resulted in a new phylogenetic tree of treefrogs. A conservative new classification based on the tree has (1) three families composing an unranked taxon, Arboranae, (2) nine subfamilies (five resurrected, one new), and (3) six resurrected generic names and five new generic names. Using the results of a maximum likelihood timetree, times of divergence were determined. For the most part these times of divergence correlated well with historical geologic events. The arboranan frogs originated in South America in the Late Mesozoic or Early Cenozoic. The family Pelodryadidae diverged from its South American relative, Phyllomedusidae, in the Eocene and invaded Australia via Antarctica. There were two dispersals from South America to North America in the Paleogene. One lineage was the ancestral stock of Acris and its relatives, whereas the other lineage, subfamily Hylinae, differentiated into a myriad of genera in Middle America.

Key words: Anura, Hylidae, phylogeny, new classification, new genera (Callimedusa, Colomascirtus, Julianus, Rheohyla, Sarcohyla), resurrected genera (Dryophytes, Dryopsophus, Hyliola, Hylomantis, Ololygon, Pithecopus), new subfamily (Scinaxinae), historical biogeography.

Resumen

Un análisis filogenético de las secuencias de 503 individuos de ranas hílidos, e individuos de cuatro taxa en grupos externos, dió como resultado 16128 sitios alineados para 19 genes. Los datos moleculares se sometieron a un análisis de máxima verosimilitud que resultó en un nuevo árbol filogenético de las ranas arbóreas. Una nueva clasificación, conservadora, basada en el árbol tiene: (1) tres familias que componen un taxón sin rango taxonómico, Arboranae, (2) nueve subfamilias (cinco resucitadas, una nueva), y (3) seis nombres de géneros resucitados y cinco nuevos géneros. Usando los resultados de un árbol de tiempo de máxima verosimilitud, se estimaron los tiempos de las divergencias. En su mayor parte, estos tiempos se correlacionan bien con eventos geológicos. Las arboranas se originaron en Suramérica en e; Tarde Mesozoico o Temprano Cenozoico. La familia Pelodryadidae divergió de su clado hermano Suramericano, los Phyllomedusidae, en el Eoceno e invadió Australia por la vía de la Antártida. Hubieron dos dispersiones de Sudamérica a Norteamérica en el Paleógeno. Un linaje es el ancestro de Acris y sus parientes, y el otro linaje, la subfamilia Hylinae se diferenció en un gran número de géneros en Mesoamérica.

Palabras clave: Anura, Hylidae, filogenia, nueva clasificación, nuevos géneros (Callimedusa, Colomascirtus, Julianus, Rheohyla, Sarcohyla), resucitados géneros (Drophytes, Dryopsophus, Hyliola, Hylomantis, Ololygon, Pithecopus), nueva subfamilia (Scinaxinae), biogeografía histórica

Resumo

Uma análise filogenética utilizando sequências de 503 táxons de os sapos de los árboles e quatro táxones externos resultou no alinhamento de 16.128 sítios de 19 genes. Os dados moleculares foram submetidos a uma análise de máxima verossimilhança, que resultou em uma nova árvore filogenética para os hilídeos. A nova classificação conservadora baseada na árvore, possui (1) três famílias que compõem um táxon sem classificação, (2) um total de nove subfamílias (cinco revalidados, uma nova), e (3) seis nomes de gêneros revalidados e cinco novos nomes de gêneros. Usando os resultados da árvore máxima verossimilhança, tempos de divergência foram determinados. A maior parte destes tempos de divergência tiveram uma boa correlação com eventos históricos geológicos. Os sapos arboranas se originaram na América do Sul no final do Mesozóico ou no inicio Cenozóico. A família Pelodryadidae divergiu de seu parente sul-americano, Phyllomedusidae, en no Eoceno e invadiu a Austrália via Antártica. Houveram duas dispersões da América do Sul para a América do Norte no Paleógeno. Uma linhagem foi o estoque ancestral de Acris e seus parentes, enquanto a outra linhagem, subfamília Hylinae, se diferenciou em uma infinidade de gêneros na América Central.

Palavras-chave: Anura, Hylidae, filogenia, nova classificação, novos nomes de gêneros (Callimedusa, Colomascirtus, Julianus, Rheohyla, Sarcohyla), nomes de gêneros revalidados (Drophytes, Dryopsophus, Hyliola, Hylomantis, Ololygon, Pithecopus), nova subfamília (Scinaxinae), biogeografia histórica

Introduction

The so-called treefrogs are plentiful in the Americas and the Australo-Papuan region, and they also occur in Europe, extreme northern Africa, western and eastern Asia, and the Japanese Archipelago. These frogs have been grouped into the family Hylidae that currently contains 951 species or 14.5% of all anurans (AmphibiaWeb, 2015). Hylid frogs of the subfamilies Hylinae and Phyllomedusinae are most speciose in South and Middle America; hylines are moderately diverse in North America, and one genus, Hyla, occurs in western Eurasia and eastern Asia. The species-rich subfamily Pelodryadinae is restricted to the Australo-Papuan Region. In the past two decades, classification of the treefrogs has changed dramatically from that based solely on morphological evidence (e.g., Duellman 2001) to arrangements based mainly on molecular evidence (e.g., Faivovich et al. 2005; Wiens et al. 2010). For example, Duellman (2001) recognized the marsupial frogs and their allies as a subfamily, Hemiphractinae, within Hylidae; he also recognized the subfamily Pseudinae (Lysapsus and Pseudis) within the Hylidae that also contained the subfamilies Hylinae, Pelodryadinae, and Phyllomedusinae. Despite the highly erroneous disposition of the marsupial frogs and their allies (Cryptobatrachus, Flectonotus, Fritziana, Gastrotheca, Hemiphractus, and Stefania) into three families by Frost et al. (2006), molecular data strongly support the monophyly of Hemiphractidae (Castroviejo-Fisher et al. 2015) that is the sister taxon to the terraranans (Duellman, 2015; Heinicke et al. 2009).

The number of species of hylid frogs has grown steadily since the recognition of the family by Daudin (1802), who recognized 27 species in one genus. Excluding species now placed in other families, Duméril and Bibron (1841) recognized six genera and 43 species; that number increased to 57 in Günther's (1859) catalogue. Twentythree years later, Boulenger (1882) recognized eight genera and 177 species, while the numbers increased to 11 genera and 286 species in Nieden (1923) and to 29 genera and 492 species in Duellman (1977). In the Version 6.0 of Amphibian Species of the World (Frost 2015), 948 species are contained in 48 genera. Herein we place those species in 60 genera in three families.

For more than 150 years, most treefrogs from Eurasia, the Americas, and the Australo-Papuan Region were placed in the genus Hyla. The first major breakup of that genus was Tyler's (1971) recognition of Litoria for the "Hyla" in the Australo-Papuan Region. A major molecular analysis of hylid frogs by Faivovich et al. (2005) resulted in the recognition of 10 new or resurrected genera in the Neotropics (mostly in Central America and Mexico), thereby restricting Hyla to Eurasia and North America south to Guatemala. Subsequently, frogs in Phyllomedusinae were subjected to an analysis of a significant set of molecular data; this resulted in the recognition of seven genera in that subfamily (Faivovich et al. 2009).

In a review of sampling strategies of a large phylogenetic unit, Hylidae, Wiens et al. (2005) recognized Hemiphractidae as separate from Hylidae; they recognized three hylid subfamilies-Hylinae, Pelodryadinae, and Phyllomedusinae. Their results were based on 144 morphological characters and data from sequences of two mitochondrial and two nuclear genes, but for most species, only the 16 S gene was used. Their combined data set included only 81 species. They erroneously applied the generic name Boana to a large clade in South America for which the generic name was shown earlier to be Hypsiboas by Faivovich et al. (2005). Wiens et al. (2010) presented a maximum likelihood analysis of up to 11 genes of 362 taxa; the results were congruent with those of Faivovich et al. (2005).

Herein we present a new molecular phylogeny of treefrogs based on 503 taxa with 16,128 aligned sites of 19 genes. Our classification based on these results places three families in an unranked taxon, thereby rendering the largest family of amphibians more manageable. Taxonomic revision was done for the same purpose in recent years for another, similar-sized group of amphibians (Hedges et al. 2008), as well as large groups of lizards and snakes (Gamble et al. 2008, Vidal et al. 2009, Townsend et al. 2011, Hedges \& Conn 2012, Hedges 2014). Classifications are intended to be dynamic, and manageability is a recognized criterion for changing taxonomy (Hedges 2013; Vences et al. 2013), even if it leads to a short period of instability (revision shock; Hedges 2013). Our classification also includes the resurrection of available names and accounts of new names in order to recognize major clades.

Material and methods

The taxonomy and content of Hylidae is based on Amphibian Species of the World (Frost 2015), last accessed on September 15, 2015.

We began by assembling all available data in Genbank for two mitochondrial genes which were the bestrepresented, the large (16S) and small (12S) rRNA subunits. We reviewed both gene alignments in MEGA 5.2 (Tamura et al. 2011) and trimmed them to include only sequences of Hylidae (s.l.), as well as those of the chosen four outgroup taxa-viz., Ceuthomantis smaragdinus, Dendrobates auratus, Haddadus binotatus, and Rhinoderma darwinii. We excluded taxa that have since been synonymized with recognized taxa according to Frost (2015).

We also built alignments for an additional 10 genes that were well-represented: cytochrome b (cytb), chemokine receptor 4 (CXCR4), histone 3 a (H3A), sodium-calcium exchanger 1 (NCX1), pro-opiomelanocortin (POMC), recombination-activating gene 1 (RAG1), rhodopsin (Rho), seventh-in-absentia (SIA), solute carrier family 8 member 3 (SLC8a3), and tyrosinase precursor (Tyr). To do this, we again queried GenBank for all hylid sequences for each of the 10 genes and examined all available sequences of Hylidae (s.l.). Again, we used the latest taxonomy (Frost 2015) and, for each gene, examined all available sequences for each recognized species and chose the longest and most complete (or, if all else equal the first sequence). This approach was similar, but not identical, to that of Pyron \& Wiens (2011). However, we added seven additional genes for which there were at least 25 distinct hylid taxa: 28S rRNA (28S), cellular myelocytomatosis exon 2 (cmyc2), cellular myelocytomatosis exon 3 (cmyc3), cytochrome oxidase subunit I (COI), tensin 3 (TNS3), NADH dehydrogenase subunit 1 (ND1), and NADH dehydrogenase subunit 2 (ND2).

All genes were aligned independently in MEGA 5.2, using MUSCLE 3.6 under default parameters (Edgar 2004), and rarely with adjustments made by eye. Protein translations were reviewed for protein-coding genes to ensure correct alignment with respect to reading frame. Individual gene trees were constructed as an additional check on data quality, and a few obviously misplaced sequences (either mislabeled in Genbank, or containing sequence errors) were removed. All 19 genes were concatenated for a total of 503 ingroup taxa (species) and four outgroup taxa, and 16,128 aligned sites. For comparison, Pyron \& Wiens (2011) included 1824 sequences of Hylidae (s.l.) across the 12 genes in common with our data set whereas we used 2306 sequences across those same genes. We included seven additional genes for a total of 3069 sequences of Hylidae (s.l.), which corresponds to 68% more sequences (overall) than in Pyron \& Wiens (2011). GenBank accession numbers for all genes of all taxa included in this study are given in Appendix 1 along with a summary of sequence coverage per gene.

Maximum likelihood analyses were performed on the concatenated dataset. As with phylogenetic analyses of other large data sets (Padial et al. 2014; Pyron et al. 2011; Pyron et al. 2013), Bayesian methods and standard bootstrap analysis were computationally intractable. RAxML 8.0.24 (Stamatakis 2014) was implemented on the CIPRES Science Gateway (Miller et al. 2010). The dataset was partitioned by gene (i.e., 19 partitions), and analyzed using the GTRGAMMA model for all partitions (the maximized available model in RAxML). All parameters for the ML analyses were estimated by the program during the run. Branch support in the trees was provided by rapid bootstrap analysis (1000 replicates). The rapid bootstrap method has been shown to produce almost identical values as the standard bootstrap method ($\mathrm{r}=0.99$), but it is many times faster (Stamatakis et al. 2008). As a test of the consistency of the rapid bootstrap method, we made five separate runs and determined that 82% of the nodes were identical or varied within 5% and nearly all (99\%) of the well-supported nodes ($>70 \%$ support value) were in this category. This is consistent with the typical pattern of bootstrap support values, where higher support values have smaller variance (Hedges 1992). Alternate partitioning schemes were considered, including the best scheme under the BIC according to PartitionFinder 1.1.1 (Lanfear et al. 2012; Lanfear et al. 2014). There were no significant changes in topology in the resulting trees between the two schemes.

Divergence times were estimated using RelTime as implemented in MEGA7 (Tamura et al. 2013). The full dataset (16,128 aligned sites) was loaded and all sites were analyzed. The topology from the ML analysis was used as the starting tree, with the four outgroup taxa defined manually. Local clocks were used, with a clock stringency of "few clocks" set (clock rates merged on two StdErrors). The GTR $+\mathrm{I}+\mathrm{G}$ model was implemented with five discrete gamma categories.

Two minimum and two maximum constraints were used as calibrations. The minimum divergence time between Hylinae and Acridinae was set at 16 million years ago (Mya), based on remains of Hyla from the Miocene of Austria (1998b). The divergence time between Phyllomedusidae and Pelodryadidae was constrained between 35-70 Mya, based on the timeframe when Australian pelodryadid arboranans (represented by Litoria) could disperse from South America through Antarctica (Li \& Powell 2001; Sanmartin \& Ronquist 2004; Springer et al. 1998; Woodburne \& Case 1996). The maximum age for the Caribbean genus Osteopilus was set at 37.2 Mya, the date at which the Greater and Lesser Antilles became permanently subaerial, based on geologic evidence
(Iturralde-Vinent \& MacPhee, 1999). RelTime analyses were also performed with various combinations of minimum and maximum calibrations in order to gauge the effects of each calibration on the inferred divergence times.

Finally, as a check on RelTime estimates, we also estimated divergence times using an uncorrelated relaxed clock model in BEAST v1.8.1 (Drummond \& Rambaut 2007) on our maximum likelihood tree with the topology constrained, using default optimization settings for priors and operators and two independent runs. We set uniform priors on the three calibrated nodes, as for the RelTime analyses, then ran the search for 100 million generations, unpartitioned, and discarded the first 10 million generations as the burn-in. We used Tree Annotator v1.8.0 (Drummond \& Rambaut 2007) to visualize the inferred phylogeny and the node age estimates. Because the time estimates from BEAST were nearly identical to those of RelTime ($r=0.96$, slope $=1.06$) we present only those from RelTime because they have more conservative confidence intervals.

Divergence times were similar across all RelTime analyses calibrated with different sets of maximums and minimums. There were four sets of identical results: (1) those analyses that included the minimum calibration of 35 Mya placed on the split between Phyllomedusidae and Pelodryadidae and maximum of 70 Mya placed on that same split, regardless of whether the other minimum and/or maximum were included; (2) those analyses that included the minimum calibration of 16 Mya placed on the split between Hylinae and Acridinae and the maximum of 70 Mya placed on the split between Phyllomedusidae and Pelodryadidae, regardless of the presence of the 37.2 Mya Osteopilus maximum; (3) those analyses that included the minimum calibration of 35 Mya placed on the split between Phyllomedusidae and Pelodryadidae and maximum of 37.2 Mya on Osteopilus, regardless of the presence of the 16 Mya minimum placed on the split between Hylinae and Acridinae; and (4) the analysis with the minimum calibration of 16 Mya placed on the split between Hylinae and Acridinae and the maximum of 37.2 Mya placed at the base of Osteopilus. Presented in our timetree (Fig. 17) are the divergence times estimated from an analysis with all four calibrations, which corresponded to the results of set one. The date estimates of analyses in set two were $\sim 11 \%$ younger than those of set one. The date estimates of analyses in set three were $\sim 17 \%$ older than those of set one. The date estimates of the analysis in set four were $\sim 7 \%$ older than those of set one. These results showed that no single calibration had a major (e.g., $>50 \%$) impact on the resulting time estimates.

The arrangement of taxonomic accounts follows the phylogenetic tree (Fig. 4). We do not present a generic account if no taxonomic changes have been made within a genus and the substance of the generic account remains the same as that in Amphibian Species of the World (Frost 2015). Family group and generic definitions are only a few statements and are not intended to be full definitions. Synonymies are given if they differ from those in Frost (2015), but those citations are not listed in the References. Snout-vent length is abbreviated SVL; larval labial tooth row formula is abbreviated LTRF, and diploid chromosome number is designated as 2 n . Species that were not included in the molecular analysis are noted by an asterisk $\left(^{*}\right)$ in the lists of species in accounts of genera. Specific specimens are referred to by their museum acronyms: AMNH = American Museum of Natural History, New York, USA; BPBM = Bernice P. Bishop Museum, Honolulu, Hawaii, USA; KU = Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA; MNRJ = Museu Nacional de Rio De Janeiro, Brazil; SBH = S. Blair Hedges collection, Philadelphia. Pennsylvania, USA; UMMZ = University of Michigan Museum of Zoology, Ann Arbor, Michigan, USA.

Classification

Arboranae new taxon

Definition. Species in this unranked taxon have an arciferal pectoral girdle, eight procoelous presacral vertebrae, separate calcaneum and astragalus, intercalary elements (usually cartilaginous) between terminal and penultimate phalanges, claw-shaped terminal phalanges, and SVL from 18 mm in Litoria microbelos (Cogger) (Fig. 1A) to 142 mm in Osteopilus vastus (Cope) (Fig. 1B); eggs deposited in water or on vegetation above water; aquatic larvae in all species; basic LTRF 2/3 in tadpoles, chromosome complement $2 \mathrm{n}=18-34$.

Content. This taxon contains three families currently containing 934 species: Hylidae, Pelodryadidae, and Phyllomedusidae.

FIGURE 1. A. The smallest known arboranan, Litoria microbelos, KU 179485, AMAX Mining Camp, 300 m , Mitchell Plateau, Western Australia, Australia. W. E. Duellman. B. The largest known arboranan, Osteopilus vastus, SBH 269439, Mome Deux Mamelles, Grande Anse, Haiti. S. B. Hedges. Bars $=10 \mathrm{~mm}$.

Distribution. This taxon ranges throughout temperate North America, Central America, the West Indies, and tropical and subtropical South America; it also occurs in Australia, Tasmania, New Guinea, and the Solomon Islands. Furthermore it exists throughout much of temperate Eurasia, Japan, and extreme northern Africa.

Etymology. The name is derived from the Latin arbor meaning tree and the Latin rana meaning frog. It is applied to this large group in which most of the species are arboreal; notable exceptions are some terrestrial species (e.g. Acris and Pseudacris in North America and some Litoria [formerly Cyclorana] in Australia) and aquatic species (Pseudinae) in South America. This name also is complementary to the higher taxon Terraranae (emended from Terrarana), which includes terrestrial breeding "land frogs." Also see the discussion in Heinicke et al. (2009) regarding the formation of higher taxa names, which are unregulated by the Code. Hedges et al. (2008) discussed why they chose an unranked taxon for landfrogs, and their reasoning applies here to the treefrogs, a similar-sized group ($\sim 1,000$ species). The numbers of taxa in both groups are growing at a high rate, which will necessitate further taxonomic subdivision. Erection of a superfamily in both cases would constrain that growth, making an unranked taxon more appropriate. For this reason we object to the use of the superfamily Brachycephaloidea in place of Terraranae (Padial et al. 2014).

Remarks. Three distinct clades are evident in our molecular phylogeny (Fig. 2). Our conservative approach to a classification based on the phylogeny is to propose an unranked name, Arboranae, for what previously had been Hylidae. Within Arboranae, we have elevated the two subfamilial names (Pelodryadinae and Phyllomedusinae) to the family level. The phylogenetic analysis shows that the large conglomerate of South American arboranans is paraphyletic with respect to Nearctic hylids. A more sophisticated analysis based on expanded genomic data is needed to show the relationships of this, the largest assemblage of arboranans, herein still recognized as members of Hylidae.

Family Hylidae Rafinesque, 1815

Hylarinia Rafinesque, 1815:78. Type genus: Hylaria Rafinesque, 1814 (an unjustified emendation of Hyla Laurenti, 1768 [fide Frost 2015]).

Definition. Iris horizontally elliptical; arciferal pectoral girdle, eight procoelous presacral vertebrae, separate calcaneum and astragalus, intercalary cartilages between terminal and penultimate phalanges, claw-shaped terminal phalanges, SVL from 18 mm in Litoria microbelos to 142 mm in Osteopilus vastus; $2 \mathrm{n}=18-34$ chromosomes; eggs deposited in water or on vegetation over water; aquatic larvae in all species.

Content. Seven subfamilies, 49 genera and 676 species.
Distribution. North America from southern Alaska and Hudson Bay southward throughout Mexico and Central America to subtropical Argentina, the Pacific lowlands from Colombia to northwestern Peru, and the

Andes southward to Bolivia. The family also occurs in the Greater Antilles and throughout much of temperate Eurasia, Japan, and extreme northern Africa.

Etymology. The family name is based on the generic name Hyla that is derived from the vocative of Hylas, the companion of Hercules, in Greek mythology.

Remarks. We recognize seven subfamilies within Hylidae. These are based on the molecular tree and do not necessarily have distinguishing morphological characters. The placement of many species is questionable because of the absence of molecular data. These are treated in the remarks of respective genera.

FIGURE 2. Phylogenetic tree of the families, subfamilies, and genera of arboranan frogs, distilled from the maximum likelihood phylogeny (Fig. 4). Names in red are new and those in blue are resurrected. The tree is rooted with Ceuthomantis smaragdinus, Dendrobates auratus, Haddadus binotatus, and Rhinoderma darwinii (not shown). Bootstrap support values are indicated at nodes.

Subfamily Acridinae Mivart, 1869

Acridina Mivart, 1869: 292. Type genus Acris Duméril and Bibron, 1841:506.
Definition. Small to medium-sized (19-48 mm SVL) mainly terrestrial and semi-aquatic frogs; discs on fingers and toes not, or only slightly, expanded (Fig. 3A); chromosome complement $2 \mathrm{n}=22$ or 24 .

Content. Three genera and 21 species.
Distribution. North America from southern Alaska southward to southern Baja California, and east of the Rocky Mountains from Hudson Bay to the Gulf of Mexico.

Etymology. The familial name is based on that of the type genus, the Greek akris, meaning a kind of grasshopper.

FIGURE 3. A. Acris gryllus, KU 207329, Bluff Lake, Noxubee County, Mississippi, USA. B. Hyliola cadaverina, KU 207397, Santa Ynez River, Santa Barbara County, California, USA. C. Hyliola regilla, KU 207467, Sunrise, 32 km S Bend, Deschutes County, Oregon, USA. D. Pseudacris triseriata, KU 207486, 10 km E Pratt, Pratt County, Kansas, USA. All by W. E. Duellman.

Hyliola Mocquard, 1899

Hyliola Mocquard, 1899:337. Type species: Hyla regilla Baird and Girard, 1852, by subsequent designation by Stejneger (1907:75).

Definition. Medium-sized frogs ($30-46 \mathrm{~mm}$ SVL) with slightly expanded terminal discs on digits; chromosome complement $2 \mathrm{n}=24$.

Content. Four species: Hyliola cadaverina (Cope), hypochondriaca (Hallowell), regilla (Baird and Girard), and sierra (Jameson, Mackey, and Richmond) (Fig. 3B and C).

Distribution. Western North America from southern Alaska to southern Baja, California, and eastward to western Texas, USA.

Etymology. The generic name is a diminutive form of "hyla," apparently alluding to the small size of these species in comparison with species of Hyla, a genus of frogs most of which are larger in size.

Remarks. Previous phylogenetic analyses of Pseudacris (e.g., Hedges 1986; Cocroft 1994) consistently showed P. cadaverina and P. regilla to be sister species and separated from other species of Pseudacris. The generic separation also recognizes the geographic separation of Hyliola and Pseudacris.

Pseudacris Fitzinger 1843

Pseudacris Fitzinger, 1843. Type species.—Rana nigrita LeConte 1825:282, by monotypy.
Chorophilus Baird, 1854. Type species.-Rana nigrita LeConte, 1825:282, by original designation.
Helocaetes Baird, 1854. Type species.-Hyla triseriata Wied-Neuwied, 1839, by subsequent designation by Schmidt. 1953:73.
Limnaoedus Mittleman and List, 1953:83. Type species.-Hylodes ocularis Holbrook, 1838 (= Hyla ocularis Bosc and Daudin, 1901), by original designation.

Parapseudacris Hardy and Burrows, 1986: 80.-Type species Hyla crucifer Wied-Neuwied, 1838, by original designation. Synonymy with Pseudacris by Hedges, 1986:11.

Definition. Small, primarily terrestrial frogs (SVL up to 48 mm in P. streckeri) (Fig. 3D); chromosome complement $2 n=24$.

Content. Fourteen species: Pseudacris brachyphona (Cope), brimleyi Brandt and Walker, clarkii (Baird), crucifer (Wied-Neuwied), feriarum (Baird), fouquettei Lemmon, Lemmon, Collins, and Cannatella, illinoensis Smith, kalmi Harper, maculata (Agassiz), nigrita (LeConte), ocularis (Holbrook), ornata (Holbrook), streckeri Wright and Wright, and triseriata (Wied-Neuwied).

Distribution. North America east of the Great Basin from Hudson Bay to the Gulf of Mexico.
Etymology. The name is derived from the Greek pseudes meaning false and the Greek akris, referring to the genus Acris.

Remarks. Three distinct clades are evident in the tree (Fig. 4). The largest clade contains nine species and includes the type species of the genus. A clade containing the large species (Pseudacris illinoensis, ornata, and streckeri) was recognized as the subgenus Pycnacris by Fouquette and Dubois (2014:361). Another clade includes Pseudacris crucifer and P. ocularis, the type species of the genera Parapseudacris Hardy and Burrows (1986:80) and Limnaoedus (Mittleman \& List 1953:83), respectively.

FIGURE 4. Maximum likelihood phylogeny of arboranan frogs based on DNA sequence data from 19 genes (16,128 aligned sites). The tree is rooted with Ceuthomantis smaragdinus, Dendrobates auratus, Haddadus binotatus, and Rhinoderma darwinii (not shown). Bootstrap support values are indicated at nodes.

FIGURE 4. (Continued)

FIGURE 4. (Continued)

FIGURE 4. (Continued)

FIGURE 4. (Continued)

FIGURE 4. (Continued)

Subfamily Hylinae Rafinesque, 1815

Hylarinia Rafinesque, 1815:78. Type genus: Hylaria Rafinesque, 1814 (an unjustified emendation of Hyla Laurenti, 1768 [fide Frost 2015]).

Definition. As for the family.
Content. Eighteen genera and 165 species.
Distribution. North America southward throughout Mexico and Central America, and barely entering South America. The subfamily also occurs throughout much of temperate Eurasia, Japan, and extreme northern Africa.

Etymology. The family name is based on the generic name Hyla that is derived from the vocative of Hylas, the companion of Hercules, in Greek mythology.

Remarks. The monophyly of all of the Nearctic, Mexican, and Central American genera of hylines is strongly supported (Fig. 2). This clade contains 18 genera and 165 species. Except for the Central American Smilisca phaeota, sila, and sordida, the ranges of which extend into northwestern South America, no species in this clade extends into that continent.

Sarcohyla new genus

Sarcohyla. Type species: Cauphias crassus Brocchi, 1877:130.
Definition. Moderate to large frogs having thick, glandular skin and enlarged prepollex without a projecting spine (Figs. 5A and B), and the alary process of the premaxilla not bifurcate posteriorly.

Content. Twenty-four species: Sarcohyla ameibothalame (Canseco-Márquez, Mendelson, and GutiérrezMayén), arborescandens (Taylor), bistincta (Cope), calthula (Ustach, Mendelson, McDiarmid, and Campbell), calvicollina* (Toal), celata* (Toal and Mendelson), cembra* (Caldwell), charadricola* (Duellman), chryses* (Adler), crassa* (Brocchi), cyanomma* (Caldwell), cyclada (Campbell and Duellman), ephemera* (Meik, Canseco-Márquez, Smith, and Campbell), hazelae* (Taylor), labedactyla* (Mendelson and Toal), miahuatlanensis* (Meik, Canseco-Márquez, Smith, and Campbell), mykter* (Adler), pachyderma* (Taylor), pentheter (Adler), psarosema* (Campbell and Duellman), robertsorum* (Taylor), sabrina* (Caldwell), siopela (Duellman), and thorectes* (Adler); all names are new combinations.

FIGURE 5. A. Sarcohyla crassa, KU 148699, 1.9 km S El Estudiante, 1850 m , Oaxaca, Mexico. J. A. Campbell. B. Sarcohyla bistincta, UMMZ 119193, Dos Aguas, 2100 m, Michoacán, Mexico. W. E. Duellman. C. Plectrohyla guatemalensis, KU 58834, Panajachel, 1600 m, Sololá, Guatemala. W. E. Duellman. D. Plectrohyla teuchestes, KU 58831, Finca Los Alpes, 1000 m, Alta Verapaz, Guatemala. W. E. Duellman

Distribution. Highlands of Mexico west of the Isthmus of Tehuantepec northward to Durango and San Luis Potosí.

Etymology. The generic name is derived from the Greek sarkodes meaning fleshy in combination with Hylas of Greek mythology. The name refers to the thick, glandular skin characteristic of most of the species in the genus. The gender is feminine.

Remarks. For the most part this genus is the Hyla bistincta and Hyla arborescandens groups of Duellman (2001). The phylogenetic tree by Faivovich et al. (2005) included only five species in the Hyla bistincta Group,
which they showed as the sister clade to Plectrohyla. Faivovich et al. (2005:104) stated: "Technically our results are certainly compatible with the recognition of a separate genus for the members of the H. bistincta group and the few species from other groups associated with them. However, we are particularly concerned that the present, clean separation between Plectrohyla and these exemplars probably will not hold when more species of the two clades, particularly from the H. bistincta group, are added." Contrary to their concern, additional species (Fig. 4) showed a complete separation of Plectrohyla from the "Hyla bistincta Group" recognized herein as the genus Sarcohyla.

Plectrohyla Brocchi, 1877

Plectrohyla Brocchi, 1877:92. Type species: Plectrohyla guatemalensis Brocchi, 1877, by original designation.
Definition. Moderate to large frogs having thick, glandular skin and enlarged prepollex with a projecting spine (Figs. 5C and D), and the alary process of the premaxilla bifurcate posteriorly.

Content. Eighteen species: Plectrohyla acanthodes* Duellman and Campbell, avia* Stuart, chrysopleura Wilson, McCranie, and Cruz-Diaz, dasypus* McCranie and Wilson, exquisita* McCranie and Wilson, glandulosa (Boulenger), guatemalensis Brocchi, hartwegi* Duellman, ixil* Stuart, lacertosa* Bumzahem and Smith, matudai Hartweg, pokomchi* Duellman and Campbell, psiloderma* McCranie and Wilson, pycnochila* Rabb, quecchi* Stuart, sagorum* Hartweg, tecunиmani* Duellman and Campbell, and teuchestes* Duellman and Campbell.

Distribution. Northern Central American highlands from Chiapas, Mexico, eastward through Guatemala and northern El Salvador to central and northern Honduras.

Etymology. The generic name is derived from the Greek plektron meaning spur and Hylas of Greek mythology. The name refers to the prepollical spines characteristic of members of the genus.

Remarks. Molecular data are available for only four of the 18 species.

Bromeliohyla, Duellmanohyla, and Ptychohyla

One clade contains one species of Bromeliohyla and seven species of Ptychohyla. Bromeliohyla bromeliacia (Taylor) is the well-supported sister of the clade of Ptychohyla salvadorensis (Mertens) plus three species of Duellmanohyla. Moreover, Ptychohyla spinipollex Schmidt is sister to that clade of five species. Although not notably different as adults, except in coloration (Fig. 6), egg deposition sites and tadpoles of the species in these three genera are distinctly different (Campbell \& Smith 1992; Duellman 2001). Bromeliohyla is an inhabitant of arboreal bromeliads where eggs are deposited in water in the axils of the leaves, and tadpoles have small ventral oral discs with a LTRF of $2 / 3-2 / 5$, long tooth rows, a depressed body, massive caudal musculature, and shallow fins. Duellmanohyla breeds in streams, where tadpoles develop in quiet pools and have a large, pendant oral discs with a LTRF of $2 / 2$ or $2 / 3$, short tooth rows, a rounded body, well-developed caudal musculature, and fins nearly as high as the caudal musculature at midlength of the tail. Ptychohyla also breeds in streams, where tadpoles develop in riffles and have large ventral oral discs with a LTRF of 3/6-6/9, long tooth rows, a rounded body, well-developed caudal musculature, and fins nearly as high as the caudal musculature at midlength of the tail. The tadpole of Ptychohyla salvadorensis has a large ventral mouth with $2 / 3-2 / 5$, entirely unlike tadpoles of Duellmanohyla (McCranie and Wilson 2002).

Low nodal support values in the clade containing Bromeliohyla, Duellmanohyla, and Ptychohyla salvadorensis, indicate that the existing molecular data are unable to resolve their relationships. Although the deep nesting of P. salvadorensis in this clade suggests that Ptychohyla is paraphyletic, more molecular data are needed to corroborate this. Therefore, we retain this species in the genus Ptychohyla.

Rheohyla new genus

Rheohyla. Type species: Hyla miotympanum Cope, 1863:47.
Definition. Medium-sized treefrog (SVL in females to 51 mm) with smooth skin on dorsum, fingers about one-
third webbed and toes about three-fourths webbed. Dermal fringes absent on outer edges of forelimbs and feet; prepollex not enlarged (Fig. 7A). Tadpoles being generalized stream inhabitants with a LTRF 2/3.

Content. Monotypic; Rheohyla miotympanum new combination.
Distribution. Eastern Mexico-Cloud forests at elevations of 1000-2800 m on the Atlantic slopes of the Sierra Madre Oriental; disjunct populations in Sierra de Los Tuxtlas and on the northern slopes of the highlands of Chiapas.

Etymology. The generic name is a combination of the Greek rheos meaning stream and Hylas of Greek mythology. The name refers to the breeding site of the species. The gender is feminine.

FIGURE 6. A. Bromeliohyla bromeliacia, KU 57249, Finca Chicoyou, 980 m , Alta Verapaz, Guatemala. B. Duellmanohyla uranochroa, KU 101727, North slope Cerro Pando, 1450 m , Bocas del Toro, Panama. C. Ptychohyla hypomykter, KU 58053, Finca Los Alpes, 1000 m , Alta Verapaz, Guatemala. D. Ptychohyla salvadorensis, KU 103256, West slope Cerro Uyuca, 1650 m, Francisco-Morazán, Honduras. All by W. E. Duellman.

Remarks. The molecular phylogenetic tree produced by Faivovich et al. (2005) contained one clade with two taxa-Hyla miotympanum and H. miliaria (Cope); they recognized this clade as a new genus Ecnomiohyla. However, these authors noted the morphological differences between the species, a factor emphasized by Mendelson et al. (2008), who eliminated E. miotympanum from their discussion of species of Ecnomiohyla. The analysis of the 16 S rRNA gene by Batista et al. (2014) resulted in a tree with seven species of Ecnomiohyla with E. miotympanum well separated from the other species. In our tree (Fig. 4) there are three species of Ecnomiohyla plus a well-supported (87%) long branch to Rheohyla miotympanum. In contrast to the canopy-dwelling species of Ecnomiohyla that breeds in tree holes, the sister genus, Rheohyla, breeds in comparatively slow moving streams, whereas members of the genera Charadrohyla, Plectrohyla, and Sarcohyla breed in cascading streams. The tadpoles of Rheohyla do not have enlarged ventral mouths, whereas species in the other three genera have tadpoles with enlarged ventral mouths with multiple rows of labial papillae.

FIGURE 7. A. Rheohyla miotympanum, KU 100965. Salto Cola de Caballo, 710 m , Nuevo León, Mexico. B. Ecnomiohyla miliaria, KU 101610, Finca Santa Clara, 1200 m, Chiriquí, Panama. Both by W. E. Duellman.

Ecnomiohyla Faivovich, Haddad, Garcia, Frost, Campbell, and Wheeler, 2005

Ecnomiohyla Faivovich, Haddad, Garcia, Frost, Campbell, and Wheeler, 2005:100. Type species: Hypsiboas miliarius Cope, 1886, by original designation.

Definition. Large treefrogs (SVL in males to 110 mm) with dermal fringes on the outer edges of the limbs, extensive webbing on the hands and feet, and an enlarged prepollex (Fig. 7B). Tadpoles with a LTRF of $2 / 3$ and developing in water in tree holes.

Content. Twelve species: Ecnomiohyla bailarina* Batista, Hertz, Mebert, Köhler, Lotzkat, Ponce, and Vesely, echinata* (Duellman), fimbrimembra* (Taylor), miliaria (Cope), minera (Wilson, McCranie, and Williams), phantasmagoria* (Dunn), rabborum Mendelson, Savage, Griffith, Ross, Kubicki, and Gagliardo, salvaje* (Wilson, McCranie, and Williams), sukia* Savage and Kubicki, thysanota* (Duellman), valancifer* (Firschein and Smith), and veraguensis* Batista, Hertz, Mebert, Köhler, Lotzkat, Ponce, and Vesely.

Distribution. Southern Mexico through Central America to western Colombia and northwestern Ecuador.
Etymology. According to Faivovich et al. (2005:100), "From the Greek, ecnomios, meaning marvelous, unusual ..." The gender is feminine.

Remarks. Mendelson et al. (2008), Savage and Kubicki (2010), and Batista et al. (2014) have expanded our knowledge of this genus, which still contains species known only from their holotypes (e.g., Ecnomiohyla echinata and E. thysanota). For more than half of a century, E. phantasmagoria has been known only from the holotype from the Río Cauca in Colombia, but recently was discovered in the Provincia de Esmeraldas in Ecuador (OrtegaAndrade et al. 2010).

Our tree (Fig. 4) shows Ecnomiohyla rabborum as the sister species of E. malaria + E. minera. The most extensive molecular phylogenetic tree, based only on the 16 S rRNA mitochondrial gene, of Ecnomiohyla contains six species (Batista et al. 2014). In their maximum likelihood consensus tree, two well-supported clades are evident. One contains E. fimbrimembra as the sister species of E. rabborum $+E$. bailarina; the second clade has E. miliaria as the sister species of E. sukia + E. veraguensis.

Mendelson et al. (2008) emphasized that the Amazonian "Hyla tuberculosa" Boulenger is not a member of Ecnomiohyla and should be designated incertae sedis. Savage and Kubicki (2010) regarded the placement of tuberculosa in Economiohyla as problematic because it lacked the synapomorphic morphological characters, principally an enlarged prepollex with keratinous spines, of the genus. We await molecular data for this species but herein we consider "Hyla tuberculosa" to be a member of the South American catch-all genus, Hypsiboas.

Hyla Laurenti, 1768:32. Type species: Hyla viridis Laurenti, 1768 (= Rana arborea Linnaeus, 1758) by subsequent designation (Stejneger, 1907:75).

Definition. Moderate-sized, arboreal, primarily green frogs with expanded terminal discs on the digits (Figs. 8A and B); no definitive morphological features are known to differentiate Hyla from Dryophytes.

FIGURE 8. A. Hyla arborea, Tubingen, Baden Württenburg, Germany. B. Hyla sarda, KU 207373, 2.4 km ESE Musei (near Domusnovas), Cagliari, Sardinia, Italy. C. Dryophytes versicolor, near Greenville, Darke County, Ohio, USA. D. Dryophytes gratiosus, KU 109911, Woodland, East Feliciana Parish, Louisiana, USA. All by W. E. Duellman.

Content. Sixteen species: Hyla annectans (Jerdon), arborea (Linnaeus), chinensis Günther, felixarabica Gvoždík, Kotlík \& Moravec, hallowellii* Thompson, heinzsteinitzi* Grach, Plesser \& Werner, intermedia Boulenger, meridionalis Boettger, molleri Bedriaga, orientalis Bedriaga, sanchiangensis* Pope, sarda (De Betta), savignyi Audouin, simplex Boettger, tsinlingensis Liu \& Hu, and zhaopingensis* Tang \& Zhang.

Distribution. Eurasia south of the Baltic Sea eastward with a hiatus between eastern Russia and the Oriental Region from northeastern India to Vietnam, China, and Hainan Island; Sardinia and Corsica, extreme north Africa from Morocco to Tunisia; northeastern Egypt, Turkey, and southern Arabian Peninsula.

Etymology. The generic name is derived from Hylas, the companion of Hercules, in Greek mythology. The gender is feminine.

Remarks. In a tree based on parsimony analysis (Faivovich et al. 2005), three Eurasian species (Hyla annectans, arborea, and savignyi) were in a clade sister of a large clade containing the 11 North American species of Hyla, plus the Asian Hyla japonica. Bayesian and maximum likelihood analyses of a larger number of species (Hua et al. 2009) resulted in the recognition of two strongly supported clades-one with nine Eurasian species and another with 13 North American species and three East Asian species-Hyla immaculata, japonica, and suweonensis. Our analysis shows strong support for two clades of Nearctic hylids. One of these is recognized
herein as the genus Hyla, restricted to the Old World; the other, herein recognized as the genus Dryophytes, is primarily New World but with three species in Asia. These genera are separated geographically.

Dryophytes Fitzinger, 1843

Dryophytes Fitzinger, 1843:31. Type species: Hyla versicolor LeConte, 1825, by original designation.
Definition. Moderate-sized, arboreal, primarily green frogs with expanded terminal discs on the digits (Figs. 8C and D); no definitive morphological features are known to separate Dryophytes from Hyla.

Content. Nineteen species: Dryophytes andersonii (Baird), arboricola* (Taylor), arenicolor (Cope), avivocus (Viosca), bocourti* (Mocquard), chrysoscelis (Cope), cinereus (Schneider), euphorbiaceus (Günther), eximius (Baird), femoralis (Daudin), gratiosus (LeConte), immaculatus Boettger, japonicus (Günther), plicatus (Brocchi), squirellus (Daudin), suweonensis (Kuramoto), versicolor (LeConte), walkeri (Stuart), and wrightorum (Taylor); all new combinations.

Distribution. North America east of the Sierra Nevada southward from extreme southern Canada to the Gulf of Mexico and on the Mexican Plateau southward to Oaxaca, plus the highlands of Chiapas, Mexico, and adjacent Guatemala. Nearctic Region in far eastern Russia, Korean Peninsula, Japan, eastern China, and Ryukyu Island

Etymology. The generic name is derived from the Greek dryos meaning tree and the Greek phytes meaning plant. This rather redundant epithet presumably refers to the arboreal habits of these frogs. The gender is masculine.

Remarks. The inclusion of Asian and North American taxa in the same genus is like the biogeography of Rana, a genus with 41 species in Eurasia and seven species in western North America (Frost 2015).

Sixteen species of Dryophytes occur is eastern North America, and three species are found in eastern temperate Asia. We purposefully excluded sequences in Genbank (FJ226937, FJ226830) identified as "Hyla heinzsteinitzi" because they were labeled incorrectly. They are Dryophytes japonica, introduced to Israel, as was determined by the authors of the study that generated the sequences (Stöck et al. 2008).

In the trees produced by Faivovich et al. (2005) and Hua et al. (2009), a sample identified as "Hyla" walkeri, a species restricted to the highlands of western Guatemala and adjacent Mexico, is the sister species of "Hyla" immaculata, a species occurring in eastern China. Hua et al. (2009:256) examined the voucher specimen of "Hyla" walkeri used by Faivovich et al. (2005); they noted that this specimen (AMNH-A 168406) came from the pet trade, has no locality data, and closely resembled specimens of "Hyla" immaculata from China. The true "Hyla" walkeri sample included in Hua et al. (2009) falls out in a clade of five Mexican species, all members of the Hyla eximia Group recognized by Duellman (2001). In our analysis, we included only those GenBank sequences positively identified as "Hyla" walkeri, from Hua et al. (2009) and Lemmon et al. (2007). (Pyron and Wiens [2011] included sequences from both the pet-trade "walkeri*" sample from Faivovich et al. [2005] and the true walkeri sample from Hua et al. [2009] as a single chimeric taxon.) Thus in our analysis (Fig. 4), Dryophytes walkeri is a member of the Hyla eximia Group recognized by Duellman (2001).

Subfamily Pseudinae Fitzinger, 1843

Pseudae Fitzinger, 1843:33. Type genus: Pseudis Wagler, 1930, by original designation.
Definition. Aquatic and semi-aquatic frogs with elongate (usually mineralized) intercalary elements between the distal and penultimate phalanges. Chromosome complement $2 \mathrm{n}=24$, but $2 \mathrm{n}=22$ in Scarthyla goinorum (Bokermann) and 28 in Pseudis cardosoi (Kwet).

Content. Three genera and 13 species.
Distribution. Tropical and subtropical South America east of the Andes, including Trinidad, southward to Uruguay, Paraguay, and northern Argentina.

Etymology. The subfamily name is that of the type genus, Pseudis, which is from the Greek, pseudos, meaning lie.

Remarks. The analysis of molecular data by Faivovich et al. (2005) showed Scarthyla goinorum Bokermann
to be the sister taxon of two species each of Lysapsus + Pseudis. Our analysis of four species of Lysapsus, six of Pseudis, and Scarthyla goinorum shows the same arrangement with 100% support of the monophyly of the three lineages (Fig. 4).

Subfamily Dendropsophinae Fitzinger, 1843

Dendropsophini Fitzinger, 1843:32. Type genus: Dendropsophus Fitzinger, 1843, by original designation.
Definition. Small to medium-sized primarily arboreal frogs; quadratojugal reduced or absent; reduction LTRF for $1 / 2$ to $0 / 0$ in larvae. Chromosome complement $2 \mathrm{n}=30$ (except in Xenohyla).

Content. Two genera with 97 species.
Distribution. Tropical southern Mexico through Central America and tropical and subtropical South America, including Trinidad, southward to northern Argentina and Uruguay.

Etymology. The familial and generic names are derived from the Greek Dendron meaning tree and the Greek psophos meaning sound or noise. The name refers to the vocalizations of these frogs originating in trees.

Remarks. Dendropsophinae is the sister taxon of Pseudinae in the phylogenetic analysis of molecular data. The two subfamilies share no derived morphological characters. The analysis also shows that Xenohyla truncata (Izecksohn) (Fig. 9A), an inhabitant of terrestrial bromeliads in the restinga of southeastern Brazil, is the sister species of Dendropsophus (Fig. 4). However, Xenohyla has $2 \mathrm{n}=24$ chromosomes (Suárez et al. 2013), whereas all Dendropsophus for which the chromosome number is known have $2 \mathrm{n}=30$ chromosomes.

Our phylogenetic analysis includes only about half (49) of the 95 species of Dendropsophus. Within the tree (Fig. 4), four groups are strongly supported—D. marmoratus Group (3 species; Fig. 9B), D. labialis Group (3 species; Fig. 9C), D. leucophyllatus Group (6 species; Fig. 9D) and D. parviceps Group (4 species; Fig. 9E). These correspond approximately with the continuous reduction on larval mouthparts as shown by Duellman and Trueb (1983). The Central American (D. microcephalus, phlebodes, sartori, and robertmertensi; Fig. 9F) is weakly supported. Further recognition of distinct clades within the burdensomely large genus Dendropsophus awaits rigorous analysis of molecular data for many more species.

Subfamily Lophyohylinae Miranda-Ribeiro, 1926

Lophiohylinae Miranda-Ribeiro, 1926:64. Type genus Lophyohyla Miranda-Ribeiro, 1923 = Phyllodytes Wagler, 1830. [As noted by Fouquette and Dubois, 2014:368, Lophiohylinae is an incorrect spelling of Lophyohyla Miranda Ribeiro, 1923:5.]

Definition. Most members of this subfamily (except Phyllodytes, Phytotriades, and Tepuihyla) are casque-headed. Chromosome complement in most genera $2 \mathrm{n}=24$, but $2 \mathrm{n}=22$ in Phyllodytes, 28 in Osteopilus wilderi (Dunn), and 34 in O. ocellatus (Linnaeus).

Content. Twelve genera and 76 species.
Distribution. Tropical and subtropical South America to Uruguay and northern Argentina, including the Pacific lowlands to northwestern Peru and the Guiana Highlands (but not the Andes), Greater Antilles, Bahama Islands, and peninsular Florida, USA; one species, Trachycephalus typhonius (Linnaeus), extending northward into Mexico.

Etymology. The familial and generic names are derived from the Greek lophos meaning mane or crest and from Hylas in Greek mythology. The gender is feminine.

Remarks. This subfamily has a 100% support value. Distinctive cranial characters help to define the casqueheaded genera Aparasphenodon, Argenteohyla, Corythomantis, Dryaderces, Itapotihyla, Nyctimantis, and Trachycephalus (Trueb 1970).

FIGURE 9. A. Xenohyla truncata, MNRJ 75594, Restinga da Maricá, 3 m , Rio de Janeiro, Brazil. J. Pombal, Jr. B-F. Representatives of the major clades in Dendropsophus: B. D. marmoratus, KU 126436, Lago Agrio, 320 m , Sucumbíos, Ecuador. C. D. labialis, KU 124867, Jardín del Recuerdo, 2580 m , Cundinamarca, Colombia. D. D. leucophyllatus, KU 128434, IPEAN, 10 m. Belém, Pará, Brazil. E. D. parviceps, KU 126476, Santa Cecilia, 340 m, Sucumbíos, Ecuador. F. D. microcephalus, KU 64591, Palmar Sur, 15 m, Puntarenas, Costa Rica, All by W. E. Duellman.

Subfamily Scinaxinae New Subfamily

Scinaxinae. Type genus: Scinax Wagler, 1830.

Definition. Small to medium-sized frogs with sacral diapophyses not expanded; in dorsal view, snout acutely rounded to acute with projecting proboscis.

Content. Four genera and 126 species.

Distribution. Mostly South America from Uruguay, northern Argentina, and northwestern Peru northward through Central America to southern and eastern Mexico; Islands of Tobago, Trinidad, and Saint Lucia.

Etymology. The familial name is derived from the Greek skinos meaning quick or nimble, an appropriate name for these agile frogs.

Remarks. The support value is high (97\%) for the cluster of three of the genera (Julianus, Ololygon, and Scinax), but the placement of Sphaenorhynchus as the sister taxon of the others is low (49\%); thus, the relationships of Sphaenorhynchus are equivocal.

Sphaenorhynchus Tschudi, 1838

Sphaenorhynchus Tschudi, 1838:71. Type species: Hyla lactea Daudin, 1802, by original designation.
Definition. Small to medium-sized green treefrogs with rounded discs on the fingers and toes, both of which are extensively webbed.

Content. Fourteen species: Sphaenorhynchus botocudo* Caramaschi, Albeida \& Gasparini, bromelicola* Bokemann, caramaschii* Toledo, Garcia, Lingnau \& Haddad, carneus* (Cope), dorisae (Goin), lacteus (Daudin), mirim* Caramaschi, Albeida \& Gasparini, orophilus (Lutz \& Lutz), palustris* Bokermann, pauloalvini* Bokermann, planicola* (Lutz \& Lutz), platycephalus* (Werner), prasinus* Bokermann, and surdus* (Cochran).

Distribution. South America east of the Andes southward to Bolivia and southeastern Brazil; Trinidad.
Etymology. The generic name is derived from the Greek sphenos meaning wedge and the Greek rhynchos meaning snout. The name applies to the flattened snouts of members of this genus.

Remarks. Molecular data are available only for the three Amazonian species that are supported at 100% for their monophyly, but data are missing for the 11 species in eastern Brazil.

Ololygon Fitzinger, 1843

Ololygon Fitzinger, 1843:31. Type species: Hyla strigilata Spix, 1824, by original designation.
Definition. Small to medium-sized frogs with slightly truncate discs on fingers and toes, webbing reduced between fingers and absent between Fingers I and II (Figs. 10A and B); venter immaculate, eggs deposited in streams or terrestrial bromeliads.

Content. Forty-six species: Ololygon agilis* (Cruz \& Peixoto), albicans* (Bokermann), alcatraz* (Lutz), angrensis* (Lutz), arduoa* (Peixoto), argyreornata* (Miranda-Ribeiro), ariadne* (Bokermann), aromothyella* (Faivovich), atrata* (Peixoto), aurata* (Wied-Neuwied), belloni* (Faivovich, Gasparini \& Haddad), berthae (Barrio), brieni* (De Witte), canastrensis* (Cardoso \& Haddad), carnevallii* Caramaschi \& Kisteumacher, catharinae (Boulenger), centralis* (Pombal \& Bastos), cosenzai* (Lacerda, Peixoto \& Feio), faivovichi (Brasileiro, Oyamaguchi \& Haddad), flavoguttata* (Lutz \& Lutz), heyeri* Peixoto \& Weygoldt, hiemalis* (Haddad \& Pombal), humilis* (Lutz \& Lutz), insperata* (Silva \& Alves-Silva), jureia* (Pombal \& Gordo), kautskyi* Carvalho-e-Silva \& Peixoto, littoralis* (Pombal \& Gordo), littorea* Peixoto, longilinea* (Lutz), luizotavioi* Caramaschi \& Kisteumacher, machadoi* (Bokermann \& Sazima), melloi* Peixoto, muriciensis* (Cruz, Nunes \& Lima), obtriangulata (Lutz), peixotoi (Brasileiro, Haddad, Sawaya \& Martins), perpusilla (Lutz \& Lutz), pombali* (Lourenço, Carvalho, Baêta, Pezzuti \& Leite), ranki* (Andrade \& Cardoso), rizibilis* (Bokermann), skaios* (Pombal, Carvalho, Canelos \& Bastos), skuki* (Lima, Cruz \& Azevedo), strigilata* (Spix), trapicheiroi* (Lutz \& Lutz), tripui* (Loureço, Nascimento \& Pires), tupinamba* (Silva \& Alves-Silva), and vsignata* (Lutz).

Distribution. Atlantic Coastal Forest of eastern Brazil, extending southward to northeastern Argentina and westward into gallery forests in the Brazilian Cerrado.

Etymology. The generic name is the Greek word, ololygon meaning the croaking of a frog. The gender is feminine.

Remarks. Throughout its recent history, Ololygon either encompassed the entire "Hyla rubra" Group (Fouquette \& Delahoussaye 1977) or was considered to be a synonym of Scinax (Duellman \& Wiens 1992;

Faivovich 2002; Pombal \& Gordo 1991). The identity of Hyla strigilata Spix, the type species of Ololygon, was uncertain until Pimenta et al. (2007a) discovered a population of frogs that fits the type description. Almeida and Cardoso (1985) suggested that the "rubra group" and "catharinae group" of Ololygon should be in separate genera. This separation was evident in the cladistics analyses of Faivovich (2002) and Faivovich et al. (2005).

FIGURE 10. A. Ololygon strigilata, Fazenda Provisão, Uruçuca, Bahia, Brazil. P. Peloso. B. Ololygon perpusilla, Estación Ecológia de Boracéia, São Paula, Brazil. M. Teixeira, Jr. C. Julianus uruguayus, 2 km from the entrance of the CPCN PróMata, 880 m , São Francisco de Paula, Rio Grande do Sul, Brazil. M. Solé. D. Scinax ruber, KU212178, Ponga Shilcayo, 4 km north-northwest of Tarapoto, 470 m, San Martín, Peru. W. E. Duellman. E. Scinax garbei, KU 221053, San Jacinto, 175 m, Loreto, Peru. W. E. Duellman. F. Scinax pedromedinae, KU 215312, Cusco Amazónico, 15 km east Puerto Maldonado, 200 m , Madre de Dios, Peru. W. E. Duellman.

Even though we have molecular data for only 30% of the species of Scinax (sensu lato), three distinct major clades are evident in the tree (Fig. 4). One of these recognized herein is Ololygon that contains the species in the "catharinae clade," as recognized by Faivovich (2002) and updated in Frost (2015). Faivovich (2002) and

Faivovich et al. (2005) noted some myological and osteological differences between certain members of the "catharinae clade" (= Ololygon) and the "rubra clade" (= Scinax). However, the utility of these characters will be ascertained only after thorough comparisons of many more species in both genera.

Faivovich et al. (2005) recognized two groups of species in their "catharinae clade." One of these is the "perpusilla" group, first defined by Peixoto (1987). This group contains at least nine small species that breed in terrestrial bromeliads in coastal southeastern Brazil. Our tree contains three of these species that form a distinctive clade separate from the species in the "catharinae group," which breed in streams.

Julianus new genus

Juliana. Type species: Hyla uruguaya Schmidt.
Definition. Small frogs with slightly truncate discs on fingers and toes, webbing reduced between fingers and absent between Fingers I and II (Fig. 10C); venter immaculate; eggs deposited in ponds.

Content. Two species: Julianus pinimus* (Bokermann \& Sazima) and J. uruguayus (Schmidt), new combinations.

Distribution. Minas Gerais, Brazil, and extreme southern Brazil, Uruguay, and northern Corrientes, Argentina.

Etymology. The generic name is a patronym for Julian Faivovich in recognition of his many contributions to our knowledge of South American frogs. The gender is masculine.

Remarks. In our phylogenetic tree (Fig. 4), Julianus uruguayus is the strongly supported (97\%) long branch sister taxon of Scinax. Hyla pinima of Bokermann and Sazima (1973) has been associated with J. uruguayus because of characteristics of the larval oral disc (Kolenc et al. 2003). Based on the interpretation of data by Kolenc et al (2003) and Faivovich et al. (2005), we place H. pinima in the genus Julianus.

Scinax Wagler, 1830

Scinax Wagler, 1830:201. Type species: Hyla aurata Wied, 1821, by subsequent designation (Stejneger, 1907:76).
Garbeana Miranda-Ribeiro, 1926:95. Type species: Garbeana garbei by monotypy.

Definition. Small to medium-sized frogs with slightly truncate discs on fingers and toes, webbing reduced between fingers and absent between Fingers I and II (Fig. 10D); venter immaculate; eggs deposited in ponds.

Content. Sixty-three species: Scinax acuminatus (Cope), altae* (Dunn), alter* (Lutz), baumgardneri* (Rivero), blairi* (Fouquette \& Pyburn), boesemani (Goin), boulengeri (Cope), cabralensis* Drummon, Baêta \& Pires, caldarum* (Lutz), camposseabrai* (Bokermann), cardosoi* (Carvalho-e-Silva \& Peixoto), castroviejoi* De la Riva, chiquitanus (De la Riva), constrictus* Lima, Bantos \& Giaretta, cretatus* Nunes \& Pombal, crospedospilus (Lutz), cruentommus (Duellman), curicica* Pugliese, Pombal \& Sazima, cuspidatus* (Lutz), danae* (Duellman), ? dolloi* Werner, duartei (Lutz), elaeochrous (Cope), eurydice* (Bokermann), exiguus* (Duellman), funereus (Cope), fuscomarginatus (Lutz), fuscovarius (Lutz), garbei (Miranda-Ribeiro), granulatus* (Peters), hayii (Barbour), ictericus Duellman \& Wiens, imbegue* Nunes, Kwet \& Pombal, iquitorum* Moravec, Tuanama, Pérez-Peña \& Lehr, jolyi Lescure \& Marty, juncae* Nunes \& Pombal, karenanneae* (Pyburn), kennedyi* (Pyburn), lindsayi* Pyburn, ? madeirae* (Bokermann), manriquei* Barrio-Amorós, Orellana \& Chacón-Ortiz, maracaya* (Cardoso \& Sazima), nasicus (Cope), nebulosus (Spix), oreites Duellman and Wiens, pachycrus* (Miranda-Ribeiro), pedromedinae (Henle), perereca* Pombal, Haddad \& Kasahara, proboscideus (Brongersma), quinquefasciatus (Fowler), rogerioi* Pugliese, Baêta \& Pombal, rostratus (Peters), ruber (Laurenti), sateremawe* Stauro \& Peloso, similis (Cochran), squalirostris (Lutz), staufferi (Cope), sugillatus (Duellman), tigrinus* Nunes, Carvalho \& Pereira, tymbamirim* Nunes, Kwet \& Pombal, villasboasi* Brusquetti, Jansen, Barrio-Amorós, Segalla \& Haddad, wandae* (Pyburn \& Fouquette), and x-signatus (Spix).

Distribution. Tropical Mexico through Central America to extreme northern Peru west of the Andes; east of the Andes through South America southward to Uruguay and northern Argentina, including Tobago, Trinidad, and Saint Lucia in the Lesser Antilles.

Etymology. The generic name is derived from the Greek skinos meaning quick or nimble, an appropriate name for these agile frogs. The gender is masculine.

Remarks. See preceding Remarks in the account of Ololygon. Only 28 of the 64 species of Scinax (44\%) are included in our analysis of DNA sequences (Fig. 4). The clade recognized herein as Scinax is well supported (94\%). Within Scinax, one clade with only 71% support contains eight species of the S. rostratus Group (Fig. 10E), originally defined by Duellman (1972a). Many of the other poorly supported clades in Scinax contain Cis-Andean and eastern Brazilian species. Structurally S. pedromedinae (Fig. 10F) is like members of the S. rostratus Group, but in our tree (Fig. 4) it is not within that group. Many named taxa are known only from the type localities, whereas the widespread S. ruber certainly is a composite of several species as evidenced by differences in color patterns, webbing, and calls (Duellman, 2005).

Subfamily Cophomantinae Hoffmann, 1878

Cophomantina Hoffmann,1878:614. Type genus Cophomantis Peters, 1870:650, junior synonym of Hypsiboas, Wagler, 1830:200 (fide Peters, 1873 "1872": 772).

Definition. Small to large, mostly arboreal frogs lacking casque heads; many have stream-adapted tadpoles. Chromosome complement $2 \mathrm{n}=24$, except $2 \mathrm{n}=22$ in Hypsiboas albopunctatus, and 18, 20, and 22 in some species of Aplastodiscus.

Content. Seven genera 179 species.

FIGURE 11. Representatives of species groups of Hypsiboas defined by Faivovich et al. 2005. A. H. sibleszi (H. benitezi Group), KU 181099, Km 127, El Dorado-Santa Elena de Uairén Road, 1250 m, Bolívar, Venezuela. B. H. lanciformis (H. albopunctatus Group), KU 221881, San Jacinto, 175 m, Loreto, Peru. C. H. riojanus (H. pulchellus Group), KU 160195, 6 km W Betanzas, 3330 m , Potosí, Bolivia. D. H. crepitans (H. faber Group), KU 166781, 16 km northeast Barrancas, 140 m , Bariñas, Venezuela. All by W. E. Duellman.

Distribution. Tropical and subtropical South America northward from Bolivia, Uruguay and northern Argentina to Nicaragua, and the Islands of Tobago and Trinidad.

Etymology. The familial name is derived from the Greek kophos meaning dull and the Greek mantis meaning prophet. Hoffmann's (1878) intention for the meaning of the familial name is unknown. The gender is masculine.

Remarks. Our molecular data coupled with morphological data necessitate the recognition of one new genus within Hyloscirtus. Enlarged oral discs completely bordered by papillae and bearing large numbers of tooth rows are characteristic of four stream-breeding genera. Two of these genera (Colomascirtus and Hyloscirtus) are sister taxa in the Andes. The other two genera (Bokermannohyla in southeastern Brazil and Myersiohyla in the Guiana Highlands) represent independent lineages. The largest known LTRF is 16/21 in Myersiohyla neblinaria Faivovich, McDiarmid, and Myers (2013).

Molecular data are available for only 56 of the 90 recognized species of Hypsiboas (62\%). There are some clades that might be recognized as genera, but each is a progressive stepwise arrangement within Hypsiboas. First and foremost among these is the Hypsiboas benitezi Group (Fig. 11A), defined by Faivovich et al. (2005). Four of the species in this well-supported (98\%) clade (Fig. 4) occur in northeastern South America, whereas two others (H. nympha Faivovich, Moravec, Cisneros-Heredia and Köhler and H. microderma Pyburn exist in the upper Amazon Basin. The Hypsiboas albopunctatus (Fig. 11B) and Hypsiboas pulchellus (Fig. 11C) groups also are well supported (99\%). Likewise, the Hypsiboas faber Group (Fig. 11D) of Faivovich et al. (2005) is well supported (100%) in our tree, which contains, except for H. albomarginatus (Spix), the gladiator frogs that construct nests, as defined by Kluge (1979), not the misuse of the term by Köhler et al. (2010). However, H. boans (Linnaeus), a nestbuilding gladiator frog is related to H. semilineatus and H. geographicus in our tree. Such apparent discrepancies indicate that greater taxon sampling and more thorough molecular refinement is essential to construct a realistic phylogeny of this large group of Neotropical treefrogs.

Colomascirtus new genus

Colomascirtus. Type species: Hyla larinopygion Duellman, 1973.
Definition. Large, colorful frogs attaining SVLs of more than 70 mm (Fig. 12A); cloacal region swollen; white parietal peritoneum and mental gland absent; stream-dwelling tadpoles with large oral discs directed ventrally and having one or two complete rows of marginal papillae; LTRF 4-14/6-17. Chromosome complement unknown.

Content. Seventeen species: Colomascirtus antioquia* (Rivera-Correa \& Faivovich), armatus (Boulenger), caucanus* (Ardila-Robayo, Ruiz-Carranza, \& Rua-Trujillo), charazani (Vellard), chlorosteus* (Reynolds \& Foster), condor* (Almendáriz, Brito-M., Batallas-R. \& Ron), criptico (Coloma, Carvajal-Endara, Dueñas, ParedesRecalde, Morales-Mite, Almeida-Reinoso, Tapia, Hutter, Toral-Contreras \& Guayasamin), larinopygion (Duellman), lindae (Duellman \& Altig), pacha (Duellman \& Hillis), pantostictus (Duellman \& Berger), princecharlesi (Coloma, Carvajal-Endara, Dueñas, Paredes-Recalde, Morales-Mite, Almeida-Reinoso, Tapia, Hutter, Toral-Contreras \& Guayasamin), psarolaimus (Duellman \& Hillis), ptychodactylus (Duellman \& Hillis), staufferorum (Duellman \& Coloma), tapichalaca (Kizirian, Coloma \& Paredes-Recalde), and tigrinus (MuesesCisneros, \& Anganoy-Criollo), all new combinations.

Distribution. Cloud forest and subparamo in the Andes of Colombia and Ecuador, and in southern Peru and Bolivia.

Etymology. The generic name is a patronym for Luis A. Coloma in combination with the Greek scirtao verb meaning to leap. Coloma has been a principal researcher on, and conservationist of, frogs in the northern Andes. The gender is masculine.

Remarks. Members of Colomascirtus were first defined as the Hyla larinopygion Group by Duellman and Hillis (1990) and subsequently by Duellman et al. (1997) and Rivera-Correa \& Faivovich (2013). Coloma et al. (2012) provided a thorough account of the morphology, osteology, development, calls, and ecology of the species in the genus. A detailed morphological study of the tadpoles by Sánchez (2010) revealed two structures (shelf on upper jaw sheath and crown-like ornamentation around naris) that help define two groups of species that are not concordant with the then recognized Hyla bogotensis and Hyla larinopygion groups (Coloma et al 2012).

FIGURE 12. A. Colomascirtus lindae, KU 164402, 11 km east-southeast Papallacta, 2660 m , Napo, Ecuador. B. Colomascirtus armatus, KU 173221, Buenos Aires, 2400 m , Cusco, Peru (note humeral spines and hypertrophied forearm). C. Hyloscirtus bogotensis, KU 169437, Parque Arqueológico San Agustín, 1750 m , Huila, Colombia. D. Hyloscirtus alytolylax, KU 207706, 4 km NE Dos Ríos, 1149 m, Pichincha, Ecuador. All by W. E. Duellman.

Two species, Colomascirtus armatus and C. charazani, have been placed in a group variously recognized as the Hyla armata Group (Duellman et al. 1997) or the Hyloscirtus armatus Group (De la Riva et al. 2000; Lötters et al. 2005). These two species occur in southern Peru and Bolivia, leaving a gap of more than 2000 km from southern Ecuador to southern Peru. Males of these large frogs have clusters of keratinized spines on the prepollex and on the proximal ventral surface of the humerus (Fig. 12B). The LTRF in tadpoles is 13-14/16-17, notably greater than in other species of Colomascirtus, 4-9/6-12 (Sánchez 2010). In our tree (Fig. 4) C. armatus and C. charazani are in a well-supported (100%) clade that is sister of all other Colomascirtus. This same arrangement was shown in molecular phylogenetic trees by Faivovich et al. (2005), Wiens et al (2010), Pyron \& Wiens (2011), Coloma et al (2012), and Rivera-Correa \& Faivovich (2013). In the phylogenetic analysis by Almendáriz at al (2014), a different topology was recovered with C. armatus and C. charazani as sister taxa of Hyloscirtus; however their arrangement had less support and was based on fewer genes than those by Coloma et al (2012) and RiveraCorrea \& Faivovich (2013).

Hyloscirtus Peters, 1882

Hyloscirtus Peters, 1882. Type species: Hyloscirtus bogotensis Peters, 1862, by original designation.
Definition. Medium-sized frogs (SVL less than 50 mm); dorsum green (Figs. 12C and D); white parietal peritoneum present; mental gland present in males; cloacal region not swollen. Stream-dwelling tadpoles with large oral discs directed ventrally and having one or two complete rows of marginal papillae; LTRF 4-8/5-15. Chromosome complement unknown.

Content. Eighteen species: Hyloscirtus albopunctulatus* (Boulenger), alytolylax (Duellman), bogotensis* (Peters), callipeza* (Duellman), colymba (Dunn), denticulentus* (Duellman), estevesi* (Rivero), jahni* (Rivero), lascinius (Rivero), lynchi* (Ruiz-Carranza \& Ardila-Robayo), mashpi* Guayasamin, Rivera-Correa, ArteagaNavarro, Culebras, Bustamente, Pyron, Peñafiel, Morochz \& Hutter, palmeri (Boulenger), phyllognathus (Melin), piceigularis* (Ruiz-Carranza \& Lynch), platydactylus* (Boulenger), sarampiona* (Ruiz-Carranza \& Lynch), simmonsi (Duellman), and torrenticola* (Duellman \& Altig).

Distribution. Cloud forest and lower montane rainforest from central Costa Rica to central Ecuador on the Pacific slopes of the Andes, western Mérida Andes in Venezuela, southward on Amazonian slopes of the Andes to central Peru.

Etymology. The generic name is derived from Hylas in Greek mythology and the Greek scirtao verb meaning to leap.

Remarks. Hyloscirtus as recognized here is the Hyla bogotensis Group originally defined by Duellman (1972b) and further recognized by Duellman et al. (1997) and Faivovich et al. (2005). Investigation of tadpole morphology by Sánchez (2010) resulted in defining two groups of species; no molecular data are available for one group (H. bogotensis, callipeza, lynchi, platydactylus, and sp. Huila). See remarks under Colomascirtus.

Family Phyllomedusidae Günther, 1859

Phyllomedusidae Günther, "1858" 1859:346. Type genus: Phyllomedusa Wagler, 1830, by monotypy.
Definition. Iris vertically elliptical; arciferal pectoral girdle, eight procoelous presacral vertebrae, separate calcaneum and astragalus, intercalary cartilages between terminal and penultimate phalanges, claw-shaped terminal phalanges, SVL from 45 mm in Callimedusa atelopoides (Duellman et al. 1988) to 119 mm in Phyllomedusa bicolor (Venâncio \& Melo-Sampiro, 2010). Chromosome complement $2 \mathrm{n}=26$.

Content. Eight genera, 59 species.
Distribution. Neotropics, from Mexico to northern Argentina.
Etymology. The familial name is derived from the Greek phyll, meaning leaf, and the Greek Medousa. The name alludes to the gelatinous egg masses deposited on leaves of trees.

Remarks. Herein we include three genera that have not been recognized recently by previous authors. Two of these names are resurrected from the synonomies of Agalychnis and Phyllomedusa, whereas the third is new. Our maximum likelihood analysis includes 46 species, 78% of the known members of the family. In the parsimony analysis of 45 species by Faivovich et al. (2010), some of the same clades emerge as in our analysis. The principal difference is in the proposed classifications. Our proposal of three additional genera is a reflection on some of the species groups recognized by Faivovich et al. (2010). We recovered a major clade of phyllomedusids with 100\% support. Within this clade are large frogs, genus Phyllomedusa (100% support), with vomerine teeth and another clade with 100% support of smaller frogs lacking vomerine teeth (100% support). Within the latter are two clades with significant support. One clade, Pithecopus (100% support), is characterized by having opposable thumbs and no bright flash colors. In the second clade, Callimedusa (78% support), the thumb is not opposable, and with one exception, all have bright flash colors.

Pithecopus Cope, 1866

Pithecopus Cope, 1866:86. Type species: Phyllomedusa azurea Cope, 1862, by original designation.
Bradymedusa Miranda-Ribeiro. 1926:104. Type species: Bradymedusa moschata Miranda Ribeiro (= Phyllomedusa rohdei) by subsequent designation by Funkhouser 1957:18.

Definition. Medium-sized species (SVL $\pm 45 \mathrm{~mm}$); Toe I much longer than, and opposable to Toe II (Fig. 13A); vomerine teeth absent; tadpoles with moderately small oral disc directed anteroventrally.

Content. Nine species: Pithecopus ayeaye Lutz, azureus (Cope), centralis (Bokermann), hypochondrialis (Daudin), megacephalus (Miranda-Ribeiro), nordestinus (Caramaschi), oreades (Brandão), palliatus (Peters), and rohdei (Mertens), all are new combinations.

Distribution. Tropical South America east of the Andes from southern Venezuela to northern Argentina
Etymology. The generic name is derived from the Greek pithekodes meaning ape-like. The gender is masculine.

Remarks. Lutz's (1966) resurrection of Cope's genus Pithecopus was not accepted by most herpetologists; instead these frogs were designated as the Phyllomedusa hypochondrialis Group (e.g., Faivovich et al. 2010). The monophyly of Pithecopus is strongly supported (100\%), as is the monophyly of Pithecopus + Callimedusa (Fig. 4). The larger frogs in the genus Phyllomedusa (Fig. 13B) tend not to be agile branch walkers.

Callimedusa new genus

Callimedusa. Type species: Phyllomedusa perinesos Duellman, 1973.

Definition. Small to medium-sized species (SVL of 44 mm in Callimedusa atelopoides to 62 mm in C. tomopterna); Toe I slightly longer than Toe II, not opposable; vomerine teeth present (except in C. atelopoides); flash colors on flanks and hidden surfaces of thighs purple or black; palpebral membrane reticulated or not; tadpoles having moderately small oral discs directed anteroventrally.

Content. Six species: Callimedusa atelopoides (Duellman, Cadle \& Cannatella), baltea (Duellman \& Toft), duellmani (Cannatella), ecuatoriana (Cannatella), perinesos (Duellman), and tomopterna (Cope); all new combinations.

Distribution. Amazonian slopes of the Andes from Ecuador to central Peru; upper Amazon Basin from Colombia to Bolivia; Guianan Region.

Etymology. The generic name is derived from the Greek kalos meaning beautiful and the Greek Medousa. The name alludes to the beautiful coloration of the flanks of members of this genus. The gender is feminine.

Remarks. The monophyly of this genus is rather well supported (78\%), but that of the "Phyllomedusa perinesos Group" of Cannatella (1982) within Callimedusa is only moderately supported (66\%). The four species having allopatric ranges on the Amazon slopes of the Andes in Ecuador and Peru (C. baltea, duellmani, ecuatoriana, and perinesos) closely resemble one another (Figs. 14A and B). In our analysis, the sister species is C. atelopoides (Fig. 14D), an inhabitant of the upper Amazon Basin. This species differs from all other phyllomedusids by being small, brown, terrestrial; furthermore, it is unlike other Callimedusa in lacking vomerine teeth and clavicles in the pectoral girdle (Duellman et al. 1988). The analysis places C. tomopterna as the sister species to the remaining members of the genus (Fig. 14C). This colorful frog that ranges throughout much of the Amazon Basin is widely allopatric to the Andean species.

Phyllomedusa Wagler, 1830

Phyllomedusa Wagler, 1830:201. Type species: Rana bicolor Boddaert, 1772, by monotypy.
Definition. Large frogs (SVL to 130 mm in Phyllomedusa bicolor; Fig. 13B), little or no webbing on feet, none on hand; vomerine teeth present; palpebral membrane not reticulated; tadpoles having moderately small oral discs directed anteroventrally.

Content. Fifteen species: Phyllomedusa bahiana Lutz, bicolor (Boddaert), boliviana Boulenger, burmeisteri Boulenger, camba De la Riva, coelestis* (Cope), distincta Lutz, iheringii Boulenger, neildi Barrio-Amorós, sauvagii Boulenger, tarsius (Cope), tetraploidea Pombal \& Haddad, trinitatis Mertens, vaillantii Boulenger, and venusta* Duellman \& Trueb.

Distribution. Amazon Basin, Chacoan Region in Paraguay, eastern Brazil southward to Uruguay and northeastern Argentina, Guianan Region, Trinidad and northern Venezuela, Cordillera Occidental and Magdalena Valley in Colombia, and extreme eastern Panama.

Etymology. According to Duellman (2001), the generic name is derived from the Greek phyll, meaning leaf, and the Greek Medousa. The name alludes to the gelatinous egg masses deposited on leaves of trees. The gender is feminine.

FIGURE 13.A. Pithecopus hypochondrialis, KU 183441, Okinawa 1, 300 m , Santa Cruz, Bolivia. D. C. Cannatella. B. Phyllomedusa bicolor, KU 124907, Leticia, 96 m, Amazonas, Colombia. W. E. Duellman.

FIGURE 14. Species of Callimedusa A. C. perinesos, KU 164450, Río Salado, 1 km upstream from Río Coca, 1410 m , Napo, Ecuador. B. C. duellmani, KU 181813, 8 km north-northeast Balzapata, 1860 m , Amazonas, Peru. C. C. tomopterna, KU 220332, Río Sucusari, Loreto, 210 m , Peru. D. C. atelopoides, KU 204764, Cusco Amazónico, 15 km east Puerto Maldonado, 200 m, Madre de Dios, Peru. All by W. E. Duellman.

Remarks. Our analysis shows a 100% support for the monophyly of this genus, within which are three strongly supported clades. The first of these contains only Phyllomedusa bicolor and P. vaillantii that are unique Among phyllomedusids by having osteoderms in the skin on the dorsum (Ruibal \& Shoemaker 1984). Although recognition of the P. burmeisteri and P. tarsius groups, as proposed by Faivovich et al. (2010), is strongly supported in our analysis, there are no known morphological features that distinguish the two groups.

Throughout the overlapping parts of their ranges, the diploid Phyllomedusa distincta and the tetraploid P. tetraploidea hybridize to produce triploids that are sterile or have low fertility (Haddad et al. 1994). Hybridization also occurs between P. bahiana and P. burmeisteri; putative hybrids are fertile (Pombal \& Haddad 1992).

Hylomantis Peters, 1873

Hylomantis Peters, 1873 " $1872:$ " 772 , Type species: Hylomantis asper Peters, 1873 " $1872 . "$ by monotypy.
Definition. Small frogs (SVL less than 50 mm); vomerine teeth present; palpebral membrane not reticulated; tadpoles having enlarged oral disc directed anteriorly.

Content. Two species: Hylomantis asperus Peters and H. granulosus (Cruz).
Distribution. Atlantic coastal forest in the states of Bahia and Pernambuco, Brazil.
Etymology. The generic name is the combination of Hylas of Greek mythology and the Greek mantis prophet or soothsayer. The gender is masculine.

Remarks. The generic placement of these frogs has been chaotic (see Faivovich et al. 2010, and Pimenta et al. 2007b). The tadpoles are unique among phyllomedusids by having the eyes lateral and visible from below and an enlarged oral disc directed anteriorly (Nascimento \& Skuk 2007). Faivovich et al. (2010) recognized Hylomantis as a genus containing H. asperus (Fig. 15A) and H. granulosus plus the "Phyllomedusa buckleyi Group." Herein we consider Hylomantis to be composed of two species in northeastern Brazil, more than 3000 km away from the "Phyllomedusa buckleyi Group" and from members of the genus Agalychnis in Central America and northwestern South America.

FIGURE 15. A. Hylomantis asperus. Belmonte, Bahia, Brazil. M. Teixeira. Jr. B. Agalychnis buckleyi, KU 143225, 16.5 km north-northeast Santa Rosa, 1700 m, Napo, Ecuador. W. E. Duellman. C. Agalychnis hulli, Universidad Ricardo Palma, 1.5 km north Teniente López, 310 m, Loreto, Peru. W. E. Duellman. D. Agalychnis lemur, KU 63940, Tapanti, 1500 m , Cartago, Costa Rica. W. E. Duellman.

Agalychnis Cope, 1864

Agalychnis Cope. 1864:181. Type species: Agalychnis callidryas Cope, 1852, by original designation. Pachymedusa Duellman, 1968. Type species: Phyllomedusa dacnicolor Cope, 1864, by original designation.

Definition. Medium-sized frogs (maximum SVL 47 mm in Agalychnis lemur [Boulenger] to 93 mm in A. spurrelli Boulenger); vomerine teeth present; palpebral membrane reticulated or not; tadpoles having moderately small oral discs directed anteroventrally.

Content. Thirteen species: Agalychnis annae (Duellman), buckleyi* (Boulenger), callidryas (Cope), dacnicolor (Cope), danieli* (Ruiz-Carranza, Hernández-Camacho \& Rueda-Almonacid), hulli (Duellman \& Mendelson), lemur (Boulenger), medinae* (Funkhouser), moreletii (Duméril), psilopygion* (Cannatella), saltator Taylor, spurrelli Boulenger, and terranova Rivera-Correa, Duarte-Cubides, Rueda-Almonacid \& Daza.

Distribution. Tropical Mexico throughout Central America to western and Amazonian Ecuador and northern Peru.

Etymology. According to Duellman (2001), the generic name is derived from the Greek aga, an intensive prefix, and the Greek lychnis, a plant with scarlet flowers. Presumably the name refers to the red-eyed treefrog, Agalychnis callidryas, the type species of the genus. The gender is feminine.

Remarks. The inclusion of Agalychnis hulli (Fig. 15C) and A. lemur (Fig. 15D) in this genus is problematic, even though their respective support values (88% and 75%) are relatively high. Agalychnis hulli is an enigma inasmuch as it is a member of the "Phyllomedusa buckleyi Group" as defined by Cannatella (1980) and exists in the Amazon Basin (Duellman \& Mendelson 1995), whereas other members of the group live in cloud forests on the slopes of the Andes and Central American highlands. Agalychnis lemur is the only species in the so-called "Phyllomedusa buckleyi Group" in our analysis. Molecular data are needed from A. buckleyi (Fig. 15B), danieli, medinae, and psilopygion before the phylogenetic relationships can be clarified for a suitable classification.

Family Pelodryadidae Günther, 1859

Pelodryadidae Günther, "1858" 1859:345, Type genus: Pelodryas Günther, 1859 (= Litoria Tschudi, 1838), by original designation.

Definition. Arciferal pectoral girdle, eight procoelous presacral vertebrae, astragalus and calcaneum not fused, intercalary cartilages between terminal and penultimate phalanges, claw-shaped terminal phalanges, SVL from 18 mm in female Litoria microbelos (Anstis 2013) to 135 mm in Nyctimystes infrafrenatus; free-living aquatic tadpoles with LTRF of no more than 2/3. Chromosome complement $2 \mathrm{n}=26(2 \mathrm{n}=24$ in Nyctimystes infrafrenatus $)$.

Content. Two subfamilies, three genera, and 208 species.
Distribution. Australia, Tasmania, New Guinea, Solomon Islands, Bismark Archipelago, Vanuatu, and Seram Island and Moluccas Islands in Indonesia. Introduced into New Caledonia and New Zealand.

Etymology. The familial name is taken from the generic name Pelodryas, which is derived from the Greek pelo meaning clay or mud and the Greek dryos meaning tree; the implied meaning is unclear.

Remarks. The phylogenetic relationships of pelodryadid frogs has been a major problem. As stated by Frost et al. (2006:204-205), "The extensive paraphyly of 'Litoria' with respect to Cyclorana and 'Nyctimystes' remains the elephant in the room for Australian herpetology, and for reasons that escape us this spectacular problem has largely been ignored until recently." As a result of their parsimony analysis that included three species of Nyctimystes and eight of Litoria (0.5% of known pelodryadids) Frost et al. (2006) considered Nyctimystes to be a junior synonym of Litoria, because the generic recognition of Nyctimystes made Litoria paraphyletic. In our analysis, Phyllomedusidae is the sister taxon of Pelodryadidae, and these two families form the sister group to Hylidae (Fig. 2). The results of a maximum likelihood analysis of molecular data from 109 species (52% of known species) reveal three major clades of pelodryadids (Fig. 2). Within Pelodryadidae two major clades of Litoria, as currently recognized, make Litoria paraphyletic with Nyctimystes intervening. Thus, we resurrect Dryopsophus for one of the clades of "Litoria." Furthermore, we recognize the subfamily Pelodryadinae to include Dryopsophus and Nyctimystes, while leaving Litoria as the single genus in Pelobiinae. This classification necessitates rearrangement of the generic synonyms of Litoria given by Frost (2015).

Subfamily Pelobiinae Fitzinger, 1843

Pelobii Fitzinger, 1843:31. Type genus: Pelobius Fitzinger, 1843, by original designation.
Definition. At the present time no morphological characters are known that distinguish this subfamily from Pelodryadinae.

Content. One genus and at least 91 species.
Distribution. Northern and eastern Australia, New Guinea and associated islands, Solomon Islands, New Britain, Vanuatu, and Moluccas Islands and Seram Island in Indonesia.

Etymology. The familial name is based on the generic name Pelobius from the Greek pelos meaning earth and the Greek suffix binos meaning coming from. The type species of Pelobius is Litoria freycineti Tschudi, 1838.

Remarks. Pelobiinae is the sister group to Pelodryadinae.

Litoria Tschudi, 1838

Litoria Tschudi, 1838:77. Type species: Litoria freycineti Tschudi, 1838, by monotypy.
Ranoidea Tschudi, 1838:76. Type species: Ranoidea jacksoniensis Tschudi, 1838, by monotypy. Synonym of Litoria by International Commission on Zoological Nomenclature (Bulletin of Zoological Nomenclature 48:337-338).
Lepthyla Duméril and Bibron, 1841:504. Substitute name for Litoria Tschudi, 1838.
Pelobius Fitzinger, 1843:31. Type species: Litoria freycineti Duméril and Bibron (= Litoria freycineti Tschudi, 1838) by original designation.
Polyphone Gistel, 1849:xi. Substitute name for Ranoidea Tschudi, 1838.
Hylomantis Peters, 1880:224. Type species Hylomantis fallax Peters, 1880, by monotypy. Preoccupied by Hylomantis Peters 1873 (Amphibia: Anura: Phyllomedusidae).
Dryomantis Peters, 1882:8 Replacement name for Hylomantis Peters, 1880.
Coggerdonia Wells and Wellington, 1985:4. Type species: Hyla adelaidensis Gray, 1841, by original designation.
Colleeneremia Wells and Wellington, 1975:4. Type species: Hyla rubella Gray, 1842, by original designation.
Llewellynura Wells and Wellington. 1985:5. Type species: Hyla dorsalis microbelos Cogger, 1966, by original designation.
Mahonabatrachus Wells and Wellington, 1985:5. Type species: Hyla meiriana Tyler, 1969, by original designation.
Pengilleyia Wells and Wellington, 1985:5. Type species: Litoria tyleri Watson, Gartside, Littlejohn, and Loftus-Hills, 1979, by original designation.
Rawlinsonia Wells and Wellington, 1085:5. Type species: Hyla ewingii Duméril and Bibron, 1841, by original designation.
Saganura Wells and Wellington, 1985:6. Type species: Hyla burrowsi Scott, 1942, by original designation.
Definition. Arboreal frogs with the pupil horizontally elliptical and the palpebral membrane unpigmented (Figs. 16 A and B); tadpoles with small anteroventral or enlarged ventral oral discs with a LTRF of $2 / 3$. Chromosome complement $2 \mathrm{n}=26$.

Content. Ninety-one species: Litoria adelaidensis (Gray), albolabris* (Wandolleck), amboinensis (Horst), angiana (Boulenger), arfakiana (Peters \& Doria), aurifera* Anstis, Tyler, Roberts, Price \& Doughty, axillaris* Doughty, biakensis* Günther, bibonius* Kraus and Allison, bicolor (Gray), burrowsi (Scott), capitula* (Tyler), chloristona* Menzies, Richards \& Tyler, chloronota* (Boulenger), chrisdahli* Richards, christianbergmanni* Günther, congenita (Peters \& Doria), contrastens* (Tyler), cooloolensis* Liem, coplandi (Tyler), corbeni* (Wells \& Wellington), darlingtoni (Loveridge), dentata (Keferstein), dorsalis Macleay, electrica Ingram \& Corben, eurynastes* Menzies, Richards \& Tyler, everetti* (Boulenger), ewingii (Duméril \& Bibron), fallax (Peters), flavescens* Kraus \& Allison, freycineti Tschudi, gasconi* Richards, Oliver, Krey \& Tjaturadi, havina Menzies, hilli* Hiaso \& Richards, humboldtorum* Günther, inermis (Peters), iris (Tyler), jervisiensis (Duméril \& Bibron), latopalmata (Günther), leucova (Tyler), littlejohni White, Whitford \& Mahony, lodesdema* Menzies, Richards \& Tyler, longicrus* (Boulenger), longirostris (Tyler \& Davies), lutea* (Boulenger), majikthise Johnson \& Richards, mareku* Günther, megalops* Richards \& Iskander, meiriana (Tyler), microbelos (Cogger), micromembrana (Tyler), modica (Tyler), mucro* Menzies, multiplica (Tyler), mystax* (Van Kampen), nasuta (Gray), nigrofrenata (Günther), nigropunctata (Meyer), oenicolen* Menzies \& Zweifel, ollauro* Menzies, olongburensis Liem \& Ingram, pallida Davies, Martin \& Watson, paraewingi Watson, Loftus-Hills \& Littlejohn, peronii (Tschudi), personata Tyler, Davies \& Martin, pronimia Menzies, prora (Menzies), pygmaea* (Meyer), quadrilineata* Tyler \& Parker, revelata Ingram, Corben \& Hosmer, rothii (De Vis), rubella (Gray), rubrops* Kraus \& Allison, scabra*

Günther \& Richards, singadanae* Richards, spartacus Richards \& Oliver, staccato* Doughty \& Anstis, thesaurensis (Peters), timida* Tyler and Parker, tornieri (Nieden), tyleri Martin, Watson, Gartside, Littlejohn, \& Loftus-Hill, umarensis* Günther, umbonata* Tyler \& Davies, verae* Günther, verreauxii (Dúmeril), viranula* Menzies, Richards \& Tyler, vocivincens* Menzies, wapogaensis* Richards \& Iskander, watjulumensis (Copland), wisselensis* (Tyler), and wollastoni (Boulenger).

Distribution. Northern and eastern Australia, New Guinea and associated islands: Solomon Islands, New Britain, Vanuatu, and Moluccas Islands and Seram Island in Indonesia.

FIGURE 16. A. Litoria bicolor, KU 179765, AMAX Mining Camp, 300 m , Mitchell Plateau, Western Australia, Australia. W. E. Duellman. B. Litoria nasuta, KU 179853, AMAX Mining Camp, 300 m , Mitchell Plateau, Western Australia, Australia. W. E. Duellman. C. Nyctimystes papua, BPBM 16895, East slope Mt. Simpson, 1440 m, Milne Bay Province, Papua New Guinea. F. Kraus. D. Nyctimystes infrafrenatus, Daintree village area, Queensland, Australia. T. Charlton. E. Dryopsophus lesueurii, KU 179838, Kilcoy Creek, Queensland, Australia. W. E. Duellman. F. Dryopsophus longipes, KU 179923, AMAX Mining Camp, 300 m , Mitchell Plateau, Western Australia, Australia. W. E. Duellman.

Etymology. The generic name is the Latin noun litoris meaning shore. Inasmuch as Tschudi's (1838) description was based on material he observed in Paris that was plundered from a British ship leaving Australia, he may have assumed that the frog lived near the shore. The gender is feminine.

Remarks. The following eight species for which molecular data are lacking are regarded as incertae sedis: castanea (Steindachner), hunti Richards, Oliver, Dahl \& Tjatiradi, jeudii (Werner), louisiadensis (Tyler), multicolor Günther, obtusirostris Meyer, richardsi Dennis \& Cunningham, and vagabunda (Peters \& Doria). At the present time they cannot be assigned with certainty to Litoria or Dryopsophus.

Two-thirds (61) of the species of Litoria occur on New Guinea and associated islands. Only three of these (L. bicolor, rothii, and rubella) also occur on Australia.

Subfamily Pelodryadinae Günther, 1859

Pelodryadidae Günther, "1858" 1859:345, Type genus; Pelodryas Günther, 1859 (= Litoria Tschudi, 1838), by original designation.
Chiroleptina Mivart, 1869:294. Type genus: Chiroptes Günther, 1859, by original designation.
Cycloraninae Parker, 1940:12. Type genus Cyclorana Steindachner, 1867, by original designation.
Nyctimystinae Laurent, 1975:283. Type genus Nyctimystes Stejneger 1916, by original designation.

Definition. Arboreal and terrestrial frogs having free-living aquatic tadpoles. Chromosome complement $2 \mathrm{n}=26$, except $2 \mathrm{n}=24$ in Nyctimystes infrafrenatus.

Content. Two genera and 109 species.
Distribution. Australia, Tasmania, and New Guinea and associated islands. Introduced in New Caledonia, New Hebrides, and New Zealand.

Etymology. Same as family.
Remarks. Pelodryadinae is the sister taxon of Pelobiinae.

Nyctimystes Stejneger, 1916

Nyctimystes Stejneger, 1916:85. Type species: Nyctimantis papua Boulenger, 1897, by monotypy.
Sandyrana Wells and Wellington. 1985:6. Type species: Hyla infrafrenata Günther, 1867, by original designation.
Definition. Pupil vertically elliptical; palpebral membrane reticulated (Fig. 16C). Stream-adapted tadpoles with large, ventral oral discs having a LTRF of $2 / 3$. Chromosome complement $2 \mathrm{n}=26$. See Remarks for different characteristics of Nyctimystes infrafrenatus.

Content. Thirty-eight species: Nyctimystes avocalis* Zweifel, bivocalis* Kraus, brevipalmatus (Tyler, Martin \& Watson) new combination, calcaratus* Menzies, cheesmani Tyler, cryptochrysos* Kraus, daymani* Zweifel, disruptus* Tyler, $d u x$ (Richards \& Oliver) new combination, eucavatus* Menzies, fluviatilis* Zweifel, foricula Tyler, granti* (Boulenger), gularis* Parker, humeralis (Boulenger), infrafrenatus (Günther), new combination, intercastellus* Kraus, kubori Zweifel, kuduki* Richards, latratus* Menzies, montanus* (Peters \& Doria), myolae* Menzies, narinosus Zweifel, obsoletus* (Lönnberg), ocreptus* Menzies, papua (Boulenger), perimetri* Zweifel, persimilis* Zweifel, pulcher (Wandolleck), purpureolatus* (Oliver, Richards, Tjaturadi \& Iskander) new combination, rueppelli* (Boettger), sanguinolenta* (Van Kampen) new combination, semipalmatus Parker, trachydermis* Zweifel, traunae* Menzies, tyleri* Zweifel, and zweifeli (Tyler).

Distribution. New Guinea and associated islands; eastern Australia from the York Peninsula to New South Wales.

Etymology. The generic name is derived from the Greek nycktos meaning night and the Greek myst meaning mystic; the name alludes to the mysteries of the night. The gender is masculine.

Remarks. Frogs of the genus Nyctimystes have been treated thoroughly by Zweifel (1958), Tyler and Davies (1979), and Menzies (2006), but the recognition of the genus has been controversial. In our analysis that includes only about one third of the species of Nyctimystes, all but three species are in a tight cluster with a support value of 100%. The immediate sister species of that clade is N. brevipalmatus, a species widely distributed in eastern Australia. Nyctimystes dux and N. infrafrenatus (Fig. 16D) form an outlying branch to the rest of the genus.
"Hyla infrafrenata" Günther is a highly enigmatic species. Molecular data (99% bootstrap support) clearly place it in Nyctimystes, whereas morphologically it is like Litoria in having a horizontal pupil and no reticulations on the palpebral membrane (Tyler 1968). Furthermore, unlike species of Nyctimystes, it breeds in ponds and has pigmented eggs that hatch into tadpoles with small anteroventral mouths (Anstis 2013). Last, it is the only pelodryadid known to have a chromosome complement of $2 \mathrm{n}=24$ (Menzies \& Tippet 1976). The taxonomic position of this species awaits more data and further interpretation to determine if it belongs in Litoria, Nyctimystes, or in its own genus; if the latter, the generic name Sandyrana Wells and Wellington is available.

Dryopsoph us Fitzinger, 1843

Dryopsophus Fitzinger, 1843:39. Type species: Hyla citropa Périn, 1807, by original designation.
Euscelis Fitzinger, 1843:31. Type species: Hyla lesueurii Duméril and Bibron, 1841, by original designation. Junior synonym of Euscelis Brulié, 1832 (Insecta).
Chiroleptes Günther 1859:34. Type species Alytes australis Gray 1842. Preoccupied by Chiroleptes Kirby, 1837 (Insecta).
Pelodryas Günther, 1859:119. Type species Rana caerulea White, 1790, by monotypy.
Cyclorana Steindachner, 1867:29. Type species: Cyclorana novaehollandiae Steindachner, 1867, by monotypy.
Phractops Peters, 1867:31. Type species Phractops alutaceus Peters, 1867 (= Cyclorana novaehollandiae Steindachner), by monotypy.
Chirodryas Keferstein, 1867:358. Type species: Chirodryas raniformis Keferstein, 1867, by monotypy.
Mitrolysis Cope, 1889:312. Type species: Chiroleptes alboguttatus Günther, 1867, by monotypy.
Fanchonia Werner 1893:81. Type species: Fanchonia elegans Werner, 1893 (= Rana aurea Lesson, 1926), by monotypy.
Brendanura Wells and Wellington, 1985:4. Type species: Chiroleptes alboguttatus Gúnther, 1867, by original designation. Neophracops Wells and Wellington, 1985:5. Type species: Chiroleptes platycephalus Günther, 1873, by original designation. Mosleyia Wells and Wellington, 1985:5. Type species: Hyla nannotis Andersson, 1916, by original designation.

Definition. Pupil horizontally elliptical; palpebral membrane unpigmented (Fig. 16E-F); tadpoles with small anteroventral or enlarged ventral oral discs; LTRF $2 / 3$ or $0 / 0$. Chromosome complement $2 \mathrm{n}=26$.

Content. Seventy-one species: Dryopsophus alboguttatus (Günther), andiirrmalin (McDonald), aureus (Lesson), aruensis* (Horst), auae* (Menzies \& Tyler), australis (Gray), barringtonensis (Copland), becki* (Loveridge), booroolongensis (Moore), brevipes (Peters), brongersmai* (Loveridge), bulmeri* (Tyler), caeruleus (White), callistus* (Kraus), cavernicolus (Tyler \& Davies), chloris (Boulenger), citropus (Péron), cryptotis (Tyler \& Martin), cultripes (Parker), cyclorhynchus (Boulenger), dahlii (Boulenger), daviesae (Mahony, Knowles, Foster \& Donnellan), dayi (Günther), dorsivenus* (Tyler), elkeae* (Günther \& Richards), eschatus* (Kraus \& Allison), eucnemis (Lönnberg), exophthalmus (Tyler, Davies \& Aplin), fusculus* (Oliver \& Richards), genimaculatus (Horst), gilleni (Spencer), gracilentus (Peters), graminea* (Boulenger), impurus (Peters \& Doria), jungguy (Donnellan \& Mahony), kroombitensis* (Hoskin, Hines, Meyer, Clarke \& Cunningham), kumae (Menzies \& Tyler), lesueurii (Duméril \& Bibron), longipes (Tyler \& Martin), loricus* Davies \& McDonald, macki* (Richards), maculosus (Tyler \& Martin), maini (Tyler \& Martin), manya (Van Beurden \& McDonald), moorei (Copland), myolus* (Hoskin), nannotis (Andersson), napaeus* Tyler, novaehollandiae (Steindachner), nudidigitus (Copland), nyakalensis (Liem), pearsonianus (Copland), phyllochrous (Günther), piperatus* (Tyler \& Davies), platycephalus (Günther), pratti* (Boulenger), raniformis (Keferstein), rarus* (Günther \& Richards), rheocolus (Liem), rivicolus* (Günther and Richards), robinsonae* (Oliver, Stuart, Fox \& Richards), sauroni* (Richards \& Oliver), serratus (Andersson), spenceri (Dubois), spiniferus* (Tyler), splendidus (Tyler, Davies \& Martin), subglandulosus (Tyler \& Anstis), vagitus (Tyler, Davies \& Martin), verrucosus (Tyler \& Martin), wilcoxii (Günther), and xanthomerus (Davies, McDonald \& Adams); all names are new combinations.

Distribution. Australia, Tasmania, and New Guinea. Introduced in New Caledonia, New Hebrides, and New Zealand.

Etymology. The generic name is derived from the Greek dryos meaning tree and the Greek psophos meaning sound or noise. The name obviously refers to the calls from the trees. The gender is masculine.

Remarks. Only about one-third of the species of Dryopsophus occur in New Guinea, and two of those species (D. caeruleus and D. eucnemis) are widespread in Australia.

Our analysis of molecular data on 66% of the species of Dryopsophus reveals five clades plus outlying species. The first clade has a support value of only 49% and contains eight species in northern and eastern Australia. Within
this group, a well-known species, Dryopsophus caeruleus, is the type species of Pelodryas Günther. A second clade having a support value of 100% contains four species ranging from Queensland to Victoria in eastern Australia; a member of this group, D. lesueurii, is the type species of Euscelis Fitzinger. Another clade of four species with a support value of 93% occurs in New Guinea and northern Queensland; no generic name is available for this group. A distinctive clade with a support value of 99% contains four species of stream-breeding frogs in northern Queensland; one of these, D. nannotis, is the type species of Mosleyia Wells and Wellington. A large group of terrestrial species has been known as Cyclorana Steindachner (type species C. novaehollandiae). In our analysis, this clade has a support value of only 64%; the clade is widespread in northern Australia and in the interior of the continent. Further, more intense analyses should provide sufficient evidence for the recognition of Cyclorana.

The tadpoles of many species in the mountains New Guinea and in Queensland in northern Australia develop in streams and have enlarged ventral mouths with a LTRF of $2 / 3$ (Tyler 1968; Günther \& Richards 2005). Two species in Queensland, Dryopsophus daviesae and D. subglandulosus are unique in not only lacking labial tooth rows but also keratinized beaks (Anstis 2013).

Biogeography

Herein we provide a brief summary of pertinent aspects of the earth's history. Estimated divergence times of relevant clades of hylid, pelodryadid, and phyllomedusid frogs are compared with the ages of geological events to hypothesize the evolutionary biogeography of these anurans.

The historical landscape. When attempting to interpret the temporal aspects of Arboranan biogeography it is necessary to have an understanding of the historical geology and climatology of that part of the world inhabited by these frogs. Examination of the geographical distributions of the families and genera strongly supports a Gondwanan origin. The breakup of Gondwana has been treated by many authors and perhaps best summarized by McLoughlin (2001).

What today are Africa and South America comprised western Gondwana. Sea-floor spreading began in the proto-South Atlantic Ocean in the early Cretaceous about 135-130 Mya. At lower latitudes the separation took place at 119-105 Mya in the Apian Epoch of the Cretaceous. South America remained an isolated continent throughout most of the Cenozoic until its connection with North America via Panama in the late Pliocene (Pittman et al. 1993).

The earliest separation between South America and west Antarctica took place in the late Eocene and early Oligocene ($35-30.5 \mathrm{Mya}$) with the subsidence of the Powell Basin. This opened what is now known as the Drake Passage. This seaway permitted the establishment of the South Circumpolar Current (Barker \& Burrell 1977; Lawyer \& Gahagan 1998). Climatic effects of the circumpolar current resulted in the initiation of the first extensive ice sheets in Antarctica, thereby eliminating a terrestrial biota.

As a result of sea-floor spreading, complete separation of East Antarctica and Australia took place at about the end of the Eocene around 35.5 Mya (Shackleton \& Kennett 1975; Veevers et al. 1991). Following the separation of Australia from Antarctica, Australia moved northward and collided with island-arc terranes of the Philippines Sea Plate during the Oligocene about 25 Mya (Crowhurst et al. 1996). The leading edge of the northward moving Australian plate was formed by a series of volcanic regions. Volcanism began in the early Miocene ($\pm 20 \mathrm{Mya}$) and continues to the present (Davies 2012). New Guinea became separated from Australia in the Pliocene. The continents were last connected at the last glacial maximum only 10,000 years ago.

North America was connected to South America from the late Cretaceous to the mid-late Eocene (84-49 Mya) (Pittman et al. 1993). However, there are geophysical data that do not support a contiguous land bridge during the Paleocene (Duque-Caro 1990). Furthermore, according to Haq et al. (1987), the drop in sea level between 66 and 68 Mya was of short duration, and the Paleocene was marked by higher sea levels before another drop at the Paleocene-Eocene boundary.

The geology of Central America and the Greater Antilles has been disputed since Donnelly (1985:116) wrote: "The closing of the Central American isthmus is far less dramatic than in other published reconstructions and requires merely that a southerly flap of Central America be gradually swung against Colombia in the early Tertiary. Of course, the final terrestrial emergence is another story; the original speculation that the Panamanian land bridge emerged finally in the late Tertiary is as valid now as it was when Darwin drew the conclusion." According to

Farris et al. (2011) the tectonic collision between Central and South America was initiated 25-23 Mya. Beginning in the mid-Miocene ($\pm 15 \mathrm{Mya}$) the island arc system that was to become the Isthmus of Panama might have made contact with South America. Uplifting of the island-arc system in the late Pliocene and early Pleistocene resulted in the existing continuous land connection between the continents (Coates \& Obando 1996). The Middle Miocene connection is supported by uranium-lead geochronology (Montes et al. 2015). The suture of the Central American paleopeninsula and South America is along the Río Atrato; thus, that part of Colombia west of the Río Atrato, including the Serranía de Baudó, was part of the Central American paleopeninsula (Galves \& Morca 1994).

Today, the Isthmus of Tehuantepec in southern Mexico is a lowland barrier between the Mexican highlands and Nuclear Central American highlands. The central ridges connecting the highlands on either side are only about 250 m above sea level, but they are sufficient to retain most of the rainfall on the Gulf of Mexico lowlands to the north (Duellman 1960). According to Durham et al. (1955), sedimentary evidence shows that Nuclear Central America was connected to southern Mexico throughout the Tertiary but that the isthmus had a lower relief and perhaps was only half as wide as present. The highlands of Mexico and Central America mostly were the results of volcanism in the Miocene and Pliocene continuing into the Holocene (Campbell 1999; Schuchert 1935).

In South America the Guianan and Brazilian shields may have been continuous with one another until the late Cretaceous, when both were elevated, and a major embayment of the Atlantic Ocean separated these ancient formations until the late Miocene. Both shields were uplifted farther in the Tertiary (Beurlen 1970; Valeton 1973), and the Brazilian Shield was uplifted further in the Quaternary (Freitas 1951). The Guiana Highlands were uplifted in the early Cretaceous (Gansser 1954). The present table mountains (tepuis) are erosional remnants of the Cretaceous uplifts (Haffer 1974).

As the South American plate arced northwestward it encountered the Nazca Plate; the latter's ongoing subduction under the South American Plate is largely responsible for the orogenic events resulting in the rise of the Andes. A major structural deflection of the Andes exists in what is now southern Ecuador and northern Peru. This is the geological Huancabamba Deflection, physiographically referred to as the Huancabamba Depression. There are significant differences in the origins of the mountains to the south of the depression, the central Andes, and those north of the depression, the northern Andes. By the late Cretaceous the Andes were uplifted to elevations probably no higher than 1000 m (Zeil 1979). The central (and southern) Andes were only about half of their present height in the early-mid Miocene (20-10 Mya). The last major uplift of the central Andes was in the Pliocene. Parts of the Cordillera Oriental and the Altiplano were uplifted to their present heights during the last 10 million years (Gregory-Wodzicki 2000); some additional orogenies took place in the Pleistocene (Jaillard et al. 2000). The major uplift of the Andes north of the Huancabamba Depression was initiated in the late Miocene and Pliocene and continued into the Quaternary as evidenced by numerous active volcanoes in Colombia and Ecuador. Palynological data show that elevations above 2000 m in the Cordillera Oriental in Colombia were reached in the mid-late Pliocene (van der Hammen 1974). For more detailed discussions of the evolution of the Andes, see Duellman and Lehr (2009) and Lynch and Duellman (1997).

During the Miocene and Pliocene large marine embayments and freshwater lakes existed in what is now the Amazon Basin. Shortly after the elevation of the Andes in the early-mid Miocene, the basin was drained primarily by the precursor of the Río Orinoco that flowed into the Caribbean Sea. In the late Miocene to early Pliocene the present drainage via the Rio Amazonas to the Atlantic Ocean was established (Hoorn et al. 1995; Hoorn 2006; Latrubesse et al. 2010; Mora et al. 2010). The present Amazon Basin covers about 8 million km^{2}, and the Amazon River is about 6400 km long from its source in the Peruvian Andes to its mouth in northeastern Brazil (Sioli 1984). For a more detailed discussion of the evolution of the South American landscape, see Duellman (2015).

In the early Cretaceous submergence occurred in North America; the continental margins were flooded and a vast interior sea divided North America into two continents (Dunbar 1961). In the middle Cretaceous the Pacific-Cascade-Sierra Nevada mountain system was uplifted, and the Laramide Revolution in the late Cretaceous elevated the Rocky Mountains and the Cordillera Occidental in Mexico. All of these mountains were greatly eroded in the latter part of the Cretaceous and in the Paleocene (King 1958). Plate movements and fluctuating sea levels during the Tertiary resulted in different land connections between North America and Eurasia. McKenna (1975) argued for a land connection between northeastern North America, perhaps via Ellesmere Island and northwestern Europe. This connection, the DeGeer Passage, existed from the Paleocene to the middle Eocene. The Bering connection between Alaska and Siberia existed periodically from the middle Eocene into the Quaternary.

Throughout the Tertiary, high-latitude cooling and climatic deterioration greatly modified the landscape. Wolfe
and Hopkins (1967) contended that a chilling occurred in the middle Oligocene in North America, followed by a relatively mild climate in the late Oligocene that reached a peak in the mid-Miocene. Throughout the Tertiary, but especially beginning in the late Miocene, climate steadily deteriorated partly as a result of the orogeny of the western mountain systems (Duellman \& Sweet 1999). These changes resulted in the compression of the MadroTertiary forest that previously had occupied much of North America (Axelrod 1958). A broad rain shadow developed east of the rising mountains and forced the deciduous forest eastward of the newly developing grasslands, thereby isolating this forest from its Asiatic component.

The aridification of the Palearctic was caused by the collective formation of the Tibetan Plateau and the Pamir and Tien Shan mountain ranges in the east, and the Iranian Plateau and the Zagros Mountains in the west (Szczerbak 2003; Sindaco \& Jeremcenko 2008). These plateaus are responsible for forming the deserts of the Middle East and the Gobi and Talamankan Deserts of Central Asia. These changes pushed the distributions of most amphibians to the edges of the western and eastern Palearctic areas (Ananjeva et al. 2006; Aitchison et al. 2007).

According to Axelrod (1972), the interior of the large African-American continent was arid prior to the birth of the South Atlantic Ocean, after which maritime and mesic climates developed in eastern South America. In the early Tertiary subtropical mesic climates existed in the southern part of the continent. The orogeny of the Andean mountain chain in the Miocene resulted in a rain shadow in Patagonia. As summarized by Duellman (1999), subsequent to the Eocene, temperate South America gradually became cooler and drier. In the early Tertiary, austral temperate forests dominated by Nothofagus extended across Patagonia and northward at least to $30^{\circ} \mathrm{N}$ latitude (Jeannel 1967). The Miocene witnessed progressive climatic deterioration in Patagonia. Furthermore, the separation of Antarctic from South America resulted in the cold Humboldt Current streaming up the Pacific Coast, which created arid coastal conditions (the Atacama Desert) from $36^{\circ} \mathrm{S}$ latitude nearly to the Equator.

The onset of aridity in Australia was in the late Eocene; aridification took place again in the mid-Miocene to the Pliocene (Macqueen et al. 2010). Final aridification mostly in the Eyrean Province in the central part of the continent was a Pleistocene event (Galloway \& Kemp 1981).

Cretaceous Frogs. A Gondwanan origin of the archeobatrachian frogs referred to the Pipoidea is shown by the many fossils from South America and Africa, continents now inhabited by living pipid frogs. The fossils range from the early Cretaceous Thoraciliacus in Israel (Trueb 1999) to the late Cretaceous Eoxenopoides (Estes 1977) and Vulcanobatrachus (Trueb et al. 2005) from South Africa and Pachybatrachus from Niger (Báez \& Rage 1998). In South America fossil pipoids are known from various sites in Argentina-Avitabatrachus from the middle Cretaceous (Báez et al. 2000), Saltenia from the Upper Cretaceous (Báez 1981), and the Paleogene Shelania (Báez \& Trueb 1997).

Three fossil genera of neobatrachians were reported from the upper Aptian-lower Albian deposits (lower Cretaceous Crato Formation) of northeastern Brazil by Báez et al. (2009). These authors conducted a phylogenetic analysis of 42 taxa including representatives of neobatrachian families. Two of the species from the lower Cretaceous of northeastern Brazil, Arariphrynus placidoi (Leal \& Britoi) and Eurycephalella alcinae Báez, Moura \& Gómez, were nested among hyloid taxa. According to Báez et al. (2009) the third species, Cratia gracilis Báez, Moura \& Gómez, may be a stem neobatrachian or an early branching within crown Neobatrachia. Most importantly, they considered their hyloid taxa to be stem Ranoidea. The age of the upper Aptian-lower Albian deposits (125-112 Mya) place these fossils as probably existing at the very end of the African-South American connection (119-105 Mya).

Two fossils have been described from the Uberata Formation and Maastrichian Marilla Formation in the Upper Cretaceous (89.3-84.9 Mya) in Minas Gerais, Brazil. One of these, Baurubatrachus pricei Báez and Perí originally was considered to be a proto-ceratophryid (Báez \& Perí 1989), but our data suggest that Baurubatrachus is likely a stem hyloid, not a proto-ceratophryid; this is supported by Báez \& Gómez (2014) who suggested that hyperossification concealed relationships. The second species, Uberobatrachus carvalhoi Báez, Gómez, Rivero, Martinelli, and Ferraz is regarded as a "nobleobatrachian hyloid" (Báez et al. 2012). The ages of these fossils correspond well with ages of genetic diversification that we propose. The most recent common ancestor of all hyloids (nobleobatrachians) is $<80 \mathrm{Mya}$ (Heinicke et al. 2009).

In Madagascar, a large amount of material of the fossil Beelzebufo ampinga Asher \& Krause reveals great similarities to South America Ceratophrys (Evans et al. 2014). This species also is from the Maastrichtian epoch of the Upper Cretaceous. Ruane et al. (2011) undertook a variety of phylogenetic analyses of Beelzebufo and other basal anurans and concluded that Beelzebufo was unlikely to represent a crown-group ceratophryine. In a review of
calytocephalellid fossils by Agnolin (2012) the family was defined to contain three genera, Calytocephalella, Beelzebufo and Gigantobatrachus. The fossil neobatrachians from Cretaceous deposits in Argentina, Brazil, and Madagascar indicate that neobatrachians existed in the mid-Cretaceous ($\pm 120 \mathrm{Mya}$) and diversified by the Upper Cretaceous (± 90 Mya).

Tertiary Fossils. The few Paleogene and Neogene fossils assigned to Hylidae and Pelodryadidae are fragmentary; these are summarized by Sanchiz (1998a). Fossils from the Miocene through the Pleistocene in North America are assigned to Acris, Proacris, and Pseudacris. Fossil Hyla are known from the Miocene to the Pleistocene of Europe. Fossils assignable to Dryophytes exist from the Miocene, Pliocene, and mostly from the Pleistocene of North America and Japan. Fragmentary material from the Pleistocene has been assigned to Osteopilus in the Bahamas, Cuba, and the United States, and similar kinds of material have been assigned to Pternohyla in Mexico.

In Australia, fragmentary remains (mostly ilia) reveal the presence of Dryopsophus in deposits at the PliocenePleistocene boundary and possibly from the mid-Miocene. Several extant species of Litoria are known from Pleistocene deposits. Four taxa from the Miocene that have been assigned to Hylidae cannot at this time be placed in either Dryopsophus or Litoria. These are Australobatrachus ilius Tyler, Litoria conicula Tyler, L. curvata Tyler, and L. magna Tyler. Existing data on these presumed pelodryadids are in Tyler (1976, 1982, 1991, 1994).

Estes and Reig (1973) noted the presence of unstudied bufonid and hylid fossils from the Paleocene of Brazil, but these have yet to be described. Consequently there is a large void in our knowledge of the early evolution of hylid frogs. Our analysis predicts an origin of "hylid" frogs to be 61.8 Mya; this time is approximately 28 million years younger than the hyloid frog, Uberobatrachus carvalhoi, which may be an ancestor of the modern Neotropical frogs.

A Timeline for Treefrog Evolution. According to our dating analysis, crown Arboranae originated 61.8 (57.5-66.1) Mya in the Paleocene (Fig. 17). From its place of origin in South America these treefrogs differentiated and dispersed into the Australo-Papuan Region, Central and North America, the West Indies, and Eurasia. This extensive distribution is exceeded by only two families of anurans, Bufonidae and Ranidae. Herein we attempt to explain the historical events in the evolution of arboranans with respect to time and geography. Temporal events are denoted by calculated times of the nodes in the timetree (Fig. 17). Calculated times are given with their confidence intervals as shown by blue bars on the timetree (Fig. 17).

Up.	Paleocene	Eocene		Oligocene		Miocene	Pl	Ho	
K	Paleogene				Neogene			Q	
Mz	CENOZOIC								
	I	1	1	1	1	1			
70.0	60.0	50.0	40.0	30.0	20.0	10.0		0.0	Millions of years ago

FIGURE 17. Timetree of arboranan frogs estimated with RelTime from DNA sequence data of 19 genes (16,128 aligned sites), based on the ML topology (Fig. 4). Estimated dates of divergence are indicated at each node (in millions of years), with blue bars representing 95% confidence intervals. Calibrated nodes are marked with red dots. The tree is rooted with Ceuthomantis smaragdinus, Dendrobates auratus, Haddadus binotatus, and Rhinoderma darwinii (not shown).

Up.	Paleocene	Eocene		Oligocene		Miocene	PI	Ho	
K	Paleogene				Neogene			Q	
Mz	CENOZOIC								
	I	1	1	,	1	1		1	
70.0	60.0	50.0	40.0	30.0	20.0	10.0		0.0	Millions of years ago

FIGURE 17. (Continued)

FIGURE 17. (Continued)

Up.	Paleocene	Eocene		Oligocene		Miocene	PI	Ho	
K	Paleogene				Neogene			Q	
Mz	CENOZOIC								
	1	1	1	1	1	1			
70.0	60.0	50.0	40.0	30.0	20.0	10.0		0.0	Millions of years ago

to Phyllomedusidae, Pelodryadidae
0.0 Millions of years ago

FIGURE 17. (Continued)

FIGURE 17. (Continued)

FIGURE 17. (Continued)

FIGURE 17. (Continued)

Pelodryadidae

Tyler (1979:73) eloquently compared faunal relations between Africa and South America and those between that continent and Australia: "South America and Africa may be regarded as lovers who experienced and exploited a large zone of contact and had considerable opportunity for interchange and exchange across it. In contrast, the South American-Australian relationship suffered from being in the form of an arranged engagement of longer duration. The couple never so much as touched one another at any time. The only contact was via a related intermediary named Aunt Arctica, whose presence between them effectively prevented a comparable degree of intimacy, and who is now outwardly cool and distinctly secretive about revealing what took place between them." So be it.

Although Hyla meridionalis now occurs in Mediterranean northwestern Africa, there is no evidence that hylid frogs ever existed in sub-Saharan Africa. These frogs originated in South America and dispersed from there to Australia and to North America. Ancestral Hylidae diverged from the phyllomedusid-pelodryadid clade in the

Paleocene 61.8 (57.5-66.1) Mya. The hylid clade retained the ancestral chromosome complement of $2 \mathrm{n}=24$, whereas the number changed to $2 \mathrm{n}=26$ in the phyllomedusid-pelodryadid clade. Following the split of pelodryadid and phyllomedusid frogs at 52.5 (47.6-57.4) Mya, the initial divergence (crown node) of pelodryadid frogs occurred in the mid-Eocene 44.2 (40.1-48.3) Mya and that of phyllomedusid frogs was later, 33.3 (29.0-37.6) Mya. When South America separated from Antarctica 35.0-30.5 Mya, ancestral pelodryadid frogs were present on that continent and Australia before the latter separated from Antarctica 35.5 Mya (Fig. 18). Our analysis suggests that the differentiation of what are now Pelodryadinae and Pelobiinae occurred in the mid-Eocene and that the genera of pelodryadids differentiated (crown nodes) in the late Eocene and Oligocene: Nyctimystes 35.1 (29.3-40.8), Litoria 33.8 (28.9-38.7), Dryopsophus 29.5 (26.0-33.1) Mya.

Four major clades of Litoria already existed by the early Oligocene (31 Mya). Our limited taxon sampling of New Guinean Litoria precludes determination of possible centers of diversification in New Guinea and Australia; likewise, we have no genomic data that might indicate monophyly of the stream-breeding Litoria in Queensland. After its diversification from the clade leading to Dryopsophus, Nyctimystes was restricted to the humid northern part of Australia, which together with the collision of the plates and major uplifts in the Miocene, became New Guinea. Most species of Nyctimystes differentiated in the early to mid-Miocene (10-22 Mya). Some major clades of Dryopsophus originated in the mid- to late Oligocene ($24-26 \mathrm{Mya}$). The clade containing the terrestrial species of Dryopsophus (formerly placed in the genus Cyclorana) inhabiting xeric to subhumid regions of Australia diverged in mid-Miocene times-13.4 (8.0-18.8) Mya, the time of major aridification in central and southern Australia.

FIGURE 18. Diagrammatic representation of dispersal routes and places of divergence of arboranan frogs in the Eocene.

Phyllomedusidae

Meanwhile, in South America the first diversification within phyllomedusids took place in the Oligocene 33.3 (29.0-37.6) Mya when the Cruziohyla-Phrynomedusa ancestral stock departed from the early branching phyllomedusid ancestor. Phrynomedusa differentiated into five species in southeastern Brazil while Cruziohyla inhabited the western Amazon Basin and eventually entered Central America. The next major split in the phyllomedusid stock was the divergence of Agalychnis (crown node) in the latest Oligocene or earliest Miocene 23.4 Mya (18.6-28.3) Mya. While the major phyllomedusid stock remained in South America, Agalychnis differentiated in Central America (see below). Generic differentiation occurred in the Miocene, when Callimedusa diverged from Pithecopus 17.1 (14.8-19.3) Mya; the former differentiated in the Andes and upper Amazon Basin, whereas the latter evolved into nine species in eastern and northern South America. Ancestral Phasmahyla diverged from the Pithecopus-Callimedusa-Phyllomedusa stock 27.9 (24.1-31.7) Mya and evolved streamdwelling tadpoles in southeastern Brazil. Phyllomedusa became a distinct lineage 18.2 (15.7-20.6) Mya and
subsequently differentiated into 15 species that collectively inhabit tropical and subtropical South America. Perhaps the most recent generic subdivision was Hylomantis in eastern Brazil from Agalychnis 25.4 (21.3-29.6) Mya.

Hylidae

Six major lineages evolved within the Hylidae in the Eocene or earliest Oligocene (crown node times) in South America-Scinaxinae 49.2 (42.0-56.4), Cophomantinae 47.5 (38.0-57.0), Lophyohylinae 37.2 (32.3-42.2), Hylinae 32.9 (30.2-35.6), Pseudinae 32.3 (25.8-38.7), and Dendropsophinae 31.9 (25.3-38.5) Mya. All genera except the West Indian Osteopilus are endemic to South America except for species that entered Central America.

Hylidae: Scinaxinae

Our analysis suggests that in the late Eocene (~ 49 Mya) arboreal Sphaenorhynchus diverged from the ancestral scinaxines in the Atlantic Coastal Forest of Brazil. Our limited data suggest that the Brazilian and Amazonian clades of Sphaenorhynchus separated in the late Oligocene (~ 22 Mya). As the climate became drier and seasonal in southern South America in the early Oligocene ($\sim 34 \mathrm{Mya}$), the scinaxine stock diverged into Julianus in the southeastern part of the range, Ololygon in the Atlantic Coastal Forest, and Scinax in the Amazon Basin.

Hylidae: Cophomantinae

Shortly after the origin of the clade herein referred to as cophomantines, an ancestral stock inhabited the earlyuplifted western part of the continent (the proto Andes). This clade representing current Colomascirtus, Hyloscirtus, and Myersiohyla diverged (crown node) in the mid-Eocene 47.5 (38.0-57.0) Mya. These frogs inhabited streams, and their tadpoles developed large suctorial mouths with many rows of labial teeth as they dispersed through the ever-rising Andes. An early divergence (the crown node) in northern South America restricted Myersiella to the Guiana Highlands, whereas in the Andes in the early Oligocene Colomascirtus differentiated from Hyloscirtus 33.3 (29.3-37.3) Mya. Coloma et al. (2012) estimated the minimum divergence time of these events as 61.2 and 40.9 Mya, respectively. The latter inhabited low to moderate elevations, whereas Colomascirtus came to inhabit streams at higher elevations.

The other major clade within Cophomantinae subsequently diverged into two lineages in the late Eocene, 36.8 (32.8-40.8) Mya. One clade consisted solely of Bokermannohyla, which inhabited the mountains of southeastern Brazil and developed stream-adapted tadpoles. In the other clade, a lowland lineage, Hypsiboas, differentiated from a highland group, Aplastodiscus with stream-adapted tadpoles, in the late Eocene, 34.2 (30.9-37.5) Mya.

The earliest divergence within Hypsiboas occurred in the mid-Oligocene 31.9 (28.4-35.5) Mya when a large group of species (H. benitezi-H. sibleszi) occupied northeastern South America including the Guiana Highlands. Differentiation of most clades of Hypsiboas occurred in the Miocene. For example, the long-legged tree frogs of the Hypsiboas albopunctatus Group differentiated about 17.4 (14.0-20.8) Mya in the Amazon Basin and dispersed into coastal Brazil. Likewise, the ancestral large, arboreal frogs in Hypsiboas albomarginatus Group diverged about 19.2 (15.4-22.9) Mya. Other species groups are more recent. For example, the clade of Andean species in the Hypsiboas balzani Group differentiated in the Pliocene about 5.0 (13.8-6.1) Mya. Similarly, the Pliocene was the time of divergence of the ancestral stock of the Hypsiboas pulchellus Group, 5.7 (4.8-6.5) Mya that came to inhabit subtropical highlands from Bolivia to southern Brazil.

Hylidae: Lophyohylinae

Another clade of arboranans now designated Lophyohylinae originated (crown node) in the late Eocene, 37.2 (32.3-42.2) Mya. Based on present distributions, lophyohylines originated in the Amazon Basin and subsequently
dispersed into eastern Brazil, the Guianan Region, and the West Indies. An early divergence (the crown node) led to the evolution of Phyllodytes in eastern Brazil and Phytotriades in Trinidad. A major split in the Lophyohylinae occurred in the late Eocene, 34.6 (30.8-38.4) Mya. The first clade contained ancestral Trachycephalus, which became widespread in the American tropics and differentiated into 14 species. The earliest divergence from the ancestral Trachycephalus was the differentiation of Itapotihyla in the latest Eocene, 33.2 (26.8-39.6) Mya; the single species inhabits the Atlantic Coastal Forest in Brazil. Itapotihyla is like some species of Trachycephalus in having a casque head. In what is now subhumid regions of northeastern Brazil, the casque-headed, bromeliaddwelling Corythomantis diverged from Trachycephalus in the Oligocene, 28.4 (22.6-34.2) Mya. Another clade of casque-headed species diverged (crown node) in the early Miocene, 20.0 (15.4-24.6) Mya; these included the ancestors of Aparasphenodon in the upper Orinoco Basin and coastal Brazil, Argenteohyla in northeastern Argentina, and Nyctimantis in the upper Amazon Basin.

The second major clade of lophyohylines split into two clades in the early Oligocene, 31.9 (28.2-35.5) Mya. One of these clades became Osteopilus (see below). The other divided into three modern genera, diverging 25-28 Mya. This led to Dryaderces (single species represented), with two species in the Amazon Basin and on the lower slopes of the adjacent Andes; Osteocephalus in the Miocene, 18.2 (15.5-20.9) Mya (crown node) with 23 species in the Amazon Basin, lower slopes of the Andes, and the Guianan Region; and Tepuihyla also in the Miocene, 16.5 (12.8-20.3) Mya (crown node) with seven species in the Guiana Highlands.

Hylid Frogs in the Greater Antilles

The West Indian frogs of the genus Osteopilus began differentiating (crown node) in the early Miocene 21.7 (17.3-26.1) Mya. The original colonist or colonists dispersed over-water on flotsam. This timing coincides with the major drainage of the Amazon Basin being to the north into the Caribbean. Our dates are older than the date of 10 Mya sometimes used for the earliest land areas in Jamaica (Donovan 2002), although that date is debated (e.g., Iturralde-Vinent \& MacPhee 1999).

The calculated times of speciation of geographic lineages in Osteopilus are Miocene events. The earliest divergence was between Cuba and the other Antilles; this divergence of Osteopilus septentrionalis (Duméril and Bibron) was at about 21.7 (17.3-26.1) Mya. This was followed by the large Hispaniolan O. vastus (Cope) about 20.7 (16.8-24.7) Mya. The Hispaniolan and Jamaican clades differentiated about 18.8 (16.1-21.5). The Hispaniolan clade differentiated into O. dominicensis (Tschudi) and O. pulchrilineatus (Cope). The Jamaican clade differentiated into two large species, O. crucialis (Harlan) and O. ocellatus (Linnaeus), and two small species, O. marianae (Dunn) and O. wilderi (Dunn).

The existing Antillean hylid fauna contains one other species, Hypsiboas heilprini (Noble) that is confined to Hispaniola. We determined that this species diverged from its closest relatives in South America in the late Oligocene, 25.4 (20.2-30.5) Mya, restricting the dispersal event (over-water, on flotsam) to the Caribbean islands, after that time.

Hylidae: Dendropsophinae

Another major branch of neotropical hylids, the dendropsophines, split from the pseudinines in the Eocene, 44.9 (39.1-50.8) Mya, and began diversifying (crown node) in the early Oligocene, 31.9 (25.3-38.5) Mya. Initially, this group split into a clade containing two small species in the genus Xenohyla confined to coastal Brazil and the speciose genus Dendropsophus, which occurs throughout tropical South America northward to Mexico and is unique among hylids in having a chromosome complement of $2 n=30$.

Several major clades are identifiable within Dendropsophus; some of these have defined geographic limits, whereas others are widespread geographically. Among the latter are the D. marmoratus Group inhabiting the Amazon Basin, Guiana Region, and the Atlantic Coastal Forest, and the D. leucophyllatus Group ranging throughout the Amazon Basin, Guiana Region, and northward to tropical Mexico. These groups evolved in the mid-Miocene; their ages are 17.0 (12.9-21.1) Mya and 18.7 (15.7-21.6) Mya, respectively. Another large group of small species principally inhabiting the Atlantic Coastal Forest but also occurring in the Amazon Basin and Guiana Region is the D. bipunctatus Group, which also diverged in the mid-Miocene, 14.9 (10.7-19.1) Mya.

Among the groups with relatively small, defined ranges are the D. labialis Group in the northern Andes and the D. microcephalus Group in Mexico and Central America. These groups originated later in the Miocene; their ages (crown node times) are 9.6 (6.8-12.3) Mya and 11.2 (8.6-13.7) Mya, respectively.

Hylidae: Pseudinae

In the early Oligocene, 32.3 (25.8-38.7) Mya, the crown node time of this subfamily, a clade of aquatic and semiaquatic frogs with elongate, calcified intercalary elements in the digits gave rise to the semiaquatic Scarthyla in the upper Amazon Basin. The major component of the pseudine clade differentiated into the smaller Lysapsus and the larger Pseudis in the early Miocene about 21.5 (18.4-24.6) Mya. Both genera have broad distributions in the Guiana Region and tropical and subtropical South America east of the Andes.

Hylidae: Hylinae

The divergence of North and Middle American hylid frogs from their relatives in South America was in the early Oligocene, 32.9 (30.2-35.6) Mya. Thus, hyline frogs were in Middle America in the early Miocene. Differentiation (crown node times) of the various genera occurred throughout the Miocene-as early as 26.1 Mya for the origin of Megastomatohyla to 13.1 Mya for the origin of Exerodonta. A major geographic divergence occurred in the early Miocene, 23.9 (22.3-25.6) Mya, when the clade now known as the Holarctic hylines diverged from the tropical hylines.

The geological uplifts and volcanism in Mexico and Central America began in the late Cretaceous and continues to the present. Only three clades of lowland inhabitants exist in the Middle American tropics; these are in a major clade that also includes Isthmohyla, which has stream-adapted tadpoles. The three lowland clades radiated (crown node times) in the mid-Miocene—Smilisca 13.2 (10.6-15.9) Mya, Tlalocohyla 15.5 (13.0-18.1) Mya, and a casque-headed clade (Anotheca, Diaglena, and Triprion) 14.3 (11.2-17.4) Mya. Slightly later the last clade differentiated into Diaglena and Triprion in xeric lowland habitats with tadpoles developing in temporary ponds, and the cloud forest-inhabitant, Anotheca, with tadpoles developing in tree holes. All species of Tlalocohyla range in the lowlands of Mexico; one species extends as far south as Costa Rica. Smilisca consists of six species ranging throughout Central America and tropical Mexico.

Currently there are 108 species of stream-breeding hylids in nine genera endemic to Middle America. The small stream-breeding Rheohyla diverged from the clade that became the large, arboreal hylines in the earliest Miocene, 23.0 (17.8-28.2) Mya. The fringe-limbed tree frogs of the genus Ecnomiohyla have disjunct distributions from Oaxaca, Mexico, through Panama, whereas Rheohyla occurs only in Mexico west of the Isthmus of Tehuantepec. Nested within the clade of inhabitants of Middle American lowlands is the stream-breading Isthmohyla, which consists of 15 species ranging discontinuously in highlands from Honduras to central Panama. Isthmohyla diverged from ancestral Smilisca in the early Miocene, 21.4 (18.7-24.1) Mya. All other streambreeding hylids belong to one major clade. Two of these clades possibly diverged in the late Oligocene. Megastomatohyla split with Charadrahyla about 26.1 (20.5-31.7) Mya in the Mexican highlands. The crown node time of the clade containing the genera Bromeliohyla, Duellmanohyla, and Ptychohyla, species occurring in the Central American highlands, is about 17.4 (14.9-19.9) Mya. These genera of yet undetermined affinities contain two bromeliad-breeding species in the genus Bromeliohyla and Duellmanohyla with eight species inhabiting the Central American highlands. That region is also inhabited by Ptychohyla with 13 species, some of which occur in southern Mexico.

The Isthmus of Tehuantepec in southern Mexico seems to have played a significant role in the differentiation and distribution of genera of stream-breeding hylines. Exerodonta split from the Plectrohyla-Sarcohyla lineage in the late Oligocene 27.5 (23.7-31.3) Mya. Exerodonta, which radiated (crown node time) in the mid-Miocene 13.1 (10.4-15.8) Mya, inhabits cloud forest and pine-oak forests at elevations of 450-2160 m; nine species occur west of the Isthmus of Tehuantepec and two live east of the isthmus. Likewise in the mid-Miocene, 15.7 (11.5-19.9) Mya, Charadrohyla was diversifying in the streams in southern Mexico, where five species live today; one other species occurs in Chiapas to the east of the Isthmus of Tehuantepec. The most striking example of diversification
on opposite sides of the isthmus is Plectrohyla (18 species) in the northern Central American highlands to the east of the isthmus and Sarcohyla (24 species) in the Mexican highlands to the west of the isthmus. They split in the early mid-Miocene 18.6 (18.6-15.9) Mya. The times of diversification of ancestral stocks on either side of the isthmus coincide with the volcanism in the Miocene that elevated nuclear Central America and southern Mexico.

The American Interchange

In summarizing the herpetofaunal exchange between North and South America, Estes and Báez (1985:170) lamented: "We are left, then, with relatively little direct evidence from the fossil record of the Cenozoic interchange between North and South America. That such interchange occurred, however, in some cases extensively, has been amply demonstrated by the neontological record." In the succeeding 30 years the fossil record has revealed little of interest, but the dating of evolutionary events as evidenced by molecular data provides us with a new perspective on the interchange. As noted previously, the timing of the divergence North and Middle American hylid frogs from their relatives in South America took place in the early Oligocene, 32.9 (30.2-35.6) Mya. Thus what are now the Middle American and Holarctic genera of Hylidae originated on the North American landmass while it was separated from South America.

FIGURE 19. Geographic dispersal and divergence of arboranan frogs between various land masses in the Tertiary and Quaternary. The six lineages from South America to Middle America are one Agalychnis, two Dendropsophus, one Hyloscirtus, and two Scinax.

However, there were other invasions of South American lineages into Central America (Fig. 19). Times of divergence suggest that several lineages had reached Central America prior to the Miocene. The Middle American clade of the Dendropsophus microcephalus Group split from its South American relatives in the mid-Miocene 11.2 (8.6-13.8) Mya, somewhat later than the divergence of the Middle American D. ebraccatus Cope from its South American relatives-14.3 (11.3-17.3) Mya. In the mid-Miocene the Middle American clade of Agalychnis diverged from its South American relatives-10.1 (7.9-12.3) Mya. Also in the mid-Miocene two Middle American species of Scinax [S. elaeochrous (Cope) and S. staufferi (Cope)] split from one another 16.3 (12.0-20.7) Mya. The times of all of these divergences are after the disconnection of the continents in the late Eocene and before the
reconnection of the continents in the Pliocene. Even the maximum times fall short of the Eocene. Unless new geological evidence would show the existence of a land bridge between the continents in the Miocene we are forced to suggest strongly that these five lineages (one Agalychnis, two Dendropsophus, and two Scinax) reached Central America from South America by over-water dispersal.

In addition to the divergence of Middle American species of Scinax in the Miocene, three other South American lineages dispersed from South America into Central America in the Miocene. Two of these are species pairs of Hyloscirtus, of which the Central American H. colymba (Dunn) split from the ancestor to H. alytolylax (Duellman) and H. simmonsi (Duellman) 21.9 (16.7-27.1) Mya. Also the Panamanian H. palmeri (Boulenger) split from the South America H. lascinius (Rivero) 21.0 (6.5-35.5) Mya. Four members of the Dendropsophus microcephalus Group radiated in Middle America. The major divergence was in the mid-Miocene, 11.2 (8.6-13.8) Mya followed by the split between D. robertmertensi (Taylor), and D. sartori (Smith) in the Pliocene 4.5 (3.0-6.0) Mya. The largest radiation of a South American group in Central America is that of Agalychnis, which also has four species endemic to northwestern South America. Among the Central American taxa, the most morphologically different species diverged from the ancestral lineage first-the small, montane A. lemur (Boulenger) in the early Miocene 21.9 (17.4-26.3) Mya and A. dacnicolor (Cope) in the mid-Miocene 14.2 (11.3-17.2) Mya. Agalychnis callidryas became widely distributed in tropical rainforest from Mexico to Panama, whereas A. moreletii and A. annae came to be isolated in highlands of nuclear Central America and Costa Rica, respectively.

After the collision of Central America and South America and the formation of the Panamanian Land Bridge between the Chocó and Central America, in the Miocene, the lengthy paleopeninsula extending southward from lower Central America throughout much of the Cenozoic became the trans-Andean Chocoan lowlands of Colombia and northwestern Ecuador. Scinax boulengeri (Cope) and its sister-species, S. sugillatus (Duellman) in the Pacific lowlands of Ecuador and Colombia, split from other living species of Scinax in the mid-Miocene 13.3 (9.0-17.6) Mya. Also, Hypsiboas pellucens (Werner) that now exists in Ecuador and southern Colombia split from the Panamanian H. rufitelus (Fouquette) in the early Pliocene, 5.3 (3.6-7.1) Mya. This distribution pattern of species in tropical rainforests in lower Central America and Chocoan South America is exhibited by the hylids Hypsiboas rosenbergi (Boulenger) and Smilisca phaeota (Cope) and phyllomedusids Agalychnis spurrelli (Boulenger) and Cruziohyla calcarifer (Boulenger), as well as Dendropsophus ebraccatus, Scinax elaeochrous, Agalychnis psilopygion, and Ecnomiohyla phantasmagoria, although molecular data are lacking for the latter. The same pattern exists among taxa in other families.

Only three species of Middle American hylid genera entered South America after the Pliocene reconnection of the continents. All are members of the genus Smilisca-S. phaeota, which, as noted above, has a Chocoan distribution. Smilisca sila Duellman and Trueb and S. sordida Peters inhabit highlands in Costa

Rica and Panama and northern foothills of the Andes in Colombia; presumably they immigrated to South America during a glacial period in the Pleistocene.

Aside from the earlier invasion of Central America by South American ancestors, many South American taxa have dispersed northward. The greatest distribution is that of Trachycephalus typhonius (Linnaeus), which occupies all of tropical Middle America. All others also are inhabitants of tropical lowlands. Two species, Hypsiboas pugnax (Schmidt) and Scinax rostratus (Peters), inhabit subhumid areas in northern South America and Panama. The Middle American occupancy by four other species consists solely of eastern Panama. Of these, Hypsiboas boans (Linnaeus), H. crepitans (Wied-Neiwied), and Scinax ruber (Linnaeus) have extensive distributions in tropical South America. Dendropsophus subocularis (Dunn) inhabits northern Colombia and eastern Panama.

Holarctic Hylinae

The predominantly Eurasian Hyla split from the predominantly North American Dryophytes in the Miocene, 22.6 Mya, with the former genus dispersing throughout Eurasia. Subsequent aridification of much of central Asia resulted there in a western clade of eight species of Hyla in what is now Europe and southwestern Asia and a farremoved eastern clade in temperate and subtropical southeastern Asia.

Also in the mid-Miocene 15.4 (13.6-17.3) Mya, the clade that remained in North America differentiated genetically, and evolved into what is recognized as Dryophytes, which occurs throughout temperate eastern North

America. Our analysis shows that a stock of Dryophytes dispersed westward across the Bering Land Bridge to Asia in the late Miocene 8.7 (6.6-10.9) Mya. This stock differentiated into three species in eastern Asia (including Japan), the Dryophytes immaculatus Group. The closest relatives of this group, the Dryophytes eximius Group, principally inhabited the pine forests from southwestern United States to Guatemala.

Thus there were two dispersals of hylid frogs across the Bering Land Bridge; temporally these are: (1) Hyla from east to west, and (2) Dryophytes from west to east. In contrast to their Middle American relatives, no lineage of hylines in North America inhabited streams, a habitat that is plentiful in the Appalachian, Rocky, and Sierra Nevada mountain ranges, among others.

FIGURE 20. Map of the New World showing species density of arboranan frogs (color), with white areas representing 0-1 species; range data are from IUCN (2014). Pie diagrams show the proportion of species in each genus, by geographic region. The border between North America and Mesoamerica is the Isthmus of Tehuantepec in southern Mexico.

Acridinae

The acridines split from the hylines in the late Eocene, 35.6 (32.8-38.4) Mya, followed by radiation in North America beginning in the early Oligocene 30.3 (26.1-34.5) Mya. Thus, there was a second invasion of North America from South America by arboranans. Interestingly, there are no living relatives of North American acridines in Middle America. This North American lineage diverged into two clades in the early Miocene, 30.3 (26.1-34.5) Mya. One of these clades lost a pair of chromosomes to have a complement of $2 n=22$ and became the semiaquatic Acris. The timing is consistent with the Lower Miocene fossil, Proacris (Holman, 1961).

The second clade of terrestrial frogs includes Pseudacris, which began to radiate (crown node) in the early Miocene, 22.5 (19.6-25.5) Mya. The uplift of the Rocky Mountains and Sierra Nevada Range with the intervening arid Great Basin in the mid-Miocene resulted in vicariance of the Pseudacris clade. A closely-related clade west of the mountains, Hyliola, began to radiate by mid-late Miocene, 11.8 (8.0-15.6) Mya.

FIGURE 21. Map of the Old World showing species density of arboranan frogs (color), with white areas representing 0-1 species; range data are from the IUCN (2014). Pie diagrams show the proportion of species in each genus, by geographic region.

Species Density and Endemism

The evolutionary events of arboranan frogs during the Cenozoic resulted in distribution patterns and geographic regions of high density (Figs. 20-21). The regions having the highest densities in South America are much the same as for all amphibians shown by Duellman (1999). The largest numbers of hylids are in the Amazon Basin and the Atlantic Coastal Forest in Brazil, followed by the mountains in Middle America and those in New Guinea. Many new species are being discovered in the highlands of New Guinea (e.g. Menzies, 2014) and in the Brazilian highlands and the Andes (e.g., Guayasamin et al 2015). These discoveries and several studies in process will continue to increase the species density in these humid montane forests, but the number of taxa in the AmazonGuiana Region also will increase. Molecular studies are revealing that some widespread species in this region actually are composites-e.g., Hypsiboas (Caminer \& Ron 2014); Dendropsophus minutus (Gehara et al. 2014).

Likewise, studies of Osteocephalus by Jungfer et al. (2013) revised the systematics of the genus and revealed nine putative new species. It is doubtful if these "hot spots" will diminish in importance as the number of species (and densities) continues to grow.

The hylid fauna of South America consists of 505 recognized species in 27 genera. There are four large genera-Dendropsophus (92 species), Hypsiboas (88 species), Ololygon (46 species), and Scinax (62 species). These four genera with a total of 288 species make up 56.8% of the hylid fauna in South America. On that continent there are five genera of stream-breeding hylids. Two of these are in the Andes-Colomascirtus (17 species) and Hyloscirtus (18 species); two in the Atlantic Coastal Forest in Brazil—Aplastodiscus (15 species) and Bokermannohyla (32 species); and Myersiohyla with six species in the Guiana Highlands. These 98 species account for only 19.3% of the hylid fauna in South America. In contrast, the percentage of stream-breeding hylid frogs in South America is much lower than in Mesoamerica and the Mexican portion of North America where 52 of the 87 species (59.8%) and 42 of 56 species (75.0%), respectively, are stream-breeders.

Biogeographic Summary

- The tree frog (Arboranae) clade diverged from its nobleobatrachian relatives in South America during the latest Cretaceous or early Cenozoic.
- Differentiation of arboranans into the three families (Hylidae, Pelodryadidae, and Phyllomedusidae) occurred in South America during the early Cenozoic.
- Ancestral Hylidae diverged from the phyllomedusid-pelodryadid clade in the late Paleocene.
- Divergence of phyllomedusids and pelodryadids occurred in the mid-Eocene.
- When South America separated from Antarctica 35.0-30.5 Mya, ancestral pelodryadid frogs were present on Antarctica and Australia before they separated about 35.5 Mya.
- In the Australo-Papuan Region the genera of pelodryadids differentiated during the Eocene and Oligocene.
- In tropical South America, the genera of phyllomedusids differentiated in the Miocene and Oligocene.
- In South America differentiation of the major clades (subfamilies) of Hylidae took place in the Eocene to early Oligocene.
- In South America most genera differentiated in the Eocene and Oligocene.
- Middle American hylids diverged from their South American relatives in the early Oligocene.
- Four major lineages of South American arboranans (Phyllomedusidae, Dendropsophinae, Hylinae, Scinaxinae) invaded Central America in the mid-Cenozoic, before the Pliocene connection of the continents.
- Many South American species entered Central America after the formation of the Panamanian Land Bridge in the mid-Pliocene, but only three species of Middle American origin (Smilisca) invaded South America.
- Generic differentiation of hylines in Middle America occurred in the late Oligocene and Miocene.
- Two ancestral clades reached North America. The first became the Acridinae restricted to temperate North America. The second was the hyline stock ancestral to Dryophytes in North America and eastern Asia and Hyla in Eurasia.
- Regions of highest hylid diversity are the Amazon Basin and the Atlantic Coast Forest in Brazil.

Discussion

Phylogenetic Analyses. Some recent molecular clock analyses of amphibians (Pyron 2014; Pyron \& Wiens 2013; Wiens 2011) inferred older divergence times than did this study. Comparison of the ages of key nodes (families, subfamilies, and some genera) from this analysis to comparable nodes in Pyron (2014) revealed, on average, a 28% difference (up to 57% older and 29% younger). In this analysis, we found the base of Arboranae to be 61.8 (57.5-66.1) Mya, whereas other authors obtained older dates of ~ 67 Mya (Wiens 2011), 71.1 (Pyron and Wiens 2013), and 70.7 (Pyron 2014) for the same node, a modest difference of about 15%.

Inconsistencies in time estimates may result from differences in taxon sampling, phylogeny, sequences used, and timing methodology. Two previous studies (Pyron 2014; Pyron \& Wiens 2013) used the phylogeny from Pyron and Wiens (2011), inferred using a 34-partition scheme of stems and loops (for two ribosomal genes) and codon
positions (for each of ten protein-coding genes). Differences in taxon sampling and sequences used by Pyron and Wiens (2011) are detailed above. In the current study, we partitioned by gene only, for a total of 19 data partitions, although like Pyron and Wiens (2011), we performed phylogenetic inference with RAxML and the same model (GTRGAMMA) for all partitions. Wiens (2011) performed phylogenetic inference on a much smaller sample of amphibian taxa (including only 23 arboranans), using only the RAG-1 gene, partitioned by codon position and analyzed with RAxML.

Wiens (2011) estimated dates of divergence using penalized likelihood (r8s). He calibrated 25 nodes throughout his amphibian tree, including the split between Pelodryadidae and Phyllomedusidae (28 Mya min; Sanmartin \& Ronquist 2004). From those results, Pyron (2014) and Pyron and Wiens (2013) designed constraints for their penalized likelihood dating analyses. That is, based on the results of Wiens (2011), they placed fixed-age constraints on particular nodes throughout their large amphibian tree, including a constraint of 73.53 Mya on the most recent common ancestor of Arboranae ("Hylidae"), Bufonidae, and other families. In the current study, we used the maximum likelihood method RelTime (Tamura et al. 2012) with three nodes calibrated (a total of two minimum and two maximum calibrations). As described above, our results were younger, on average, than those produced in the three studies discussed (Wiens 2011; Pyron \& Wiens 2013; Pyron 2014).

In summary, the major difference among published studies of these amphibians, in terms of times of divergence of clades, involves the node at the base of the hyloid radiation, which was an event that almost certainly occurred in South America. Researchers that have estimated that node to be prior to the end-Cretaceous impact event (Wiens 2011; Pyron \& Wiens 2013; Pyron 2014) have used assumptions and constraints to obtain the early age whereas researchers that have obtained younger dates (e.g., Roelants et al. 2007; Bossuyt \& Roelants 2009; Heinicke et al. 2009; this study), have not used such constraints, lending support to the younger dates being most likely correct. The significance of such a late date for this major South American expansion of hyloid frogs, compared with the timing of frog radiations on other continents (Roelants et al. 2007), is not fully understood, but might be tied to the end-Cretaceous impact event. Tsunamis and local destruction were likely more severe in the New World, close to where the asteroid hit, pruning much of the existing diversity of hyloid frogs.

Classification. Few, if any, classifications of large groups of organisms are perfect. Ours is no exception. In the phylogenetic tree some species do not appear where expected. Although incomplete taxon sampling may influence the position of a given taxon on the tree, more likely it is because of insufficient or incorrect genomic data or misidentifications. However the major example in our classification is the placement of Litoria infrafrenata (auctorum) in the genus Nyctimystes. This enigmatic species is unique among pelodryadids in having $2 \mathrm{n}=24$ chromosomes (Menzies \& Tippet 1976); otherwise, it is like most members of the genera Dryopsophus and Litoria in having generalized tadpoles developing in lentic water (Anstis 2013). Litoria infrafrenata lacks the vertical pupil and pigmented reticulations on the lower eyelid that are characteristic of Nyctimystes, the tadpoles of which have enlarged sectorial mouths and develop in lotic water (Zweifel 1958). In our analysis, "Litoria infrafrenata" clearly is categorized as a Nyctimystes. The only genes for which all Nyctimantis are covered are $12 \mathrm{~S} \& 16 \mathrm{~S}$; and both of these genes place N. infrafrenatus with N. dux. These two species are outliers of the other species of Nyctimystes. Morphologically $N . d u x$ is most similar to Litoria graminea and L. sauroni (Richards \& Oliver 2006); genetic data are not available for those two species. Obviously this seemingly taxonomic dilemma exists because of lacking genomic data on the presumed relatives of $N . d u x$ and the absence of data on nuclear genes of all of the species concerned. Additional molecular data may help to clarify the taxonomic placement of L. infrafrentata.

Biogeography. In his major work on biogeography of southern lands, Darlington (1965) maintained the Matthewsian approach of continental stability. But the same year Brundin's (1965) seminal biogeographic paper based on the phylogeny and distribution of chironomid midges emphasized the significance of Antarctic to Gondwanan biogeography.

Our analysis supports a trans-Antarctic dispersal of arboranans from South America to Australia, resulting in the Pelodryadidae undergoing extensive diversification in the Australo-Papuan Region. There is no evidence to support Pyron's (2014:793) contention that Pelodryadids arrived in Australia by a "trans-Pacific dispersal event from South America to Australasia approximately $91-52 \mathrm{Ma}$." A trans-Antarctic dispersal event is even more evident for two sister taxa (Pyron \& Wiens 2011), the South American Calyptocephalellidae and the Australian Myobatrachidae. The fossil record supports Wiens's (2007) suggestion that these two families diverged in the late Cretaceous. Fossil Calyptocephalella are known from the Eocene to the Miocene in Argentina (Muzzoppapa \& Báez 2009). Four living genera of myobatrachids are represented in the Australian fossil record: Lechriodus in the

Lower Eocene to Upper Miocene, Limnodynastes mid- to late Miocene, Neobatrachus Upper Miocene to Lower Pliocene, and Philora Upper Oligocene to Upper Miocene (Sanchiz 1998b). The earlier calibrated events proposed by Pyron and Wiens (2011) are even more supportive of trans-Antarctic dispersal than are our calibrations. Ancestral pelodryadids and myobatrachids had to have existed on Antarctica for millions of years, during which time they probably diversified in the mild climatic conditions that prevailed in the Cretaceous and Paleogene (Poole \& Cantrill 2006).

These two lineages of frogs are not the only taxa that crossed Antarctica. For example, while restricted today to temperate South America, Australia, Tasmania, New Guinea, New Zealand, and New Caledonia, the southern beech trees of the genus Nothofagus (Nothofagaceae) underwent their major radiation 55-40 Mya and dispersed across Antarctica (Cook \& Crisp 2005). Likewise, ancestral groups of marsupials dispersed from South America, via Antarctica, to Australia in the late Cretaceous or early Paleocene (Beck et al. 2008); these authors also suggested that South American microbiothere marsupials are the result of a back dispersal from eastern Gondwana (Antarctica and Australia). Chelid turtles are known from the early Cretaceous to the Recent in Australia and South America (de la Fuente et al. 2014); they dispersed via Antarctic from South America to Australia.

The intermittent connections between South America and Central America, the so-called Isthmian Link, have provided the highway for the "Great American Interchange," an event of monumental significance to the American biota. We have determined that there have been at least six invasions of hylid frogs into Central America from South America prior to the current connection of the continents. Similarly, there have been two invasions of toads of the genus Bufo (sensu lato) (Pauley et al. 2004). The first of these, Anaxyrus, is the biogeographic equivalent of the Nearctic hylid genus Dryophytes, whereas the second, Incilius, is the Middle American equivalent of the numerous genera of hylines in tropical Mexico and Central America. Rhinella marina (Linnaeus) apparently is a Plio-Pleistocene invader like the hylid Trachycephalus typhonius (Linnaeus); both species are widespread in tropical and subtropical environments throughout Middle America, as well as South America.

In tropical America the largest group of frogs is Terraranae containing nearly 1000 species of directdeveloping frogs (Hedges et al. 2008). There have been many transgressions of the isthmus by various lineages of Terraranae. The major Middle American group of terraranans is Craugastor, a genus containing 113 species ranging throughout Central America, Mexico, and extreme southwestern United States. Based on their molecular clock calibration, Crawford and Smith (2005) estimated that the ancestral stock of Craugastor entered Central America from South America in the Paleocene, although Heinicke et al. (2007), in a more extensive analysis, estimated that event to be younger, in the Middle Eocene (49-37 Mya). The well-documented molecular analysis of terraranan frogs of the genus Pristimantis in Central America and Colombia by Pinto-Sánchez et al. (2012) revealed 11 invasions of Central America from South America. Their dates for the dispersals indicated at least eight invasions prior to the mid-Pliocene, the previous estimated creation of the isthmian link.

Once the Panamanian land bridge was established in the Miocene there were many invaders from South America (Bacon et al. 2015); among the amphibians were allobatid, dendrobatid, and leptodactylid frogs and caecilians. Santos et al. (2009) estimated ten dispersals of dendrobatid frogs from the Chocó Region to Central América in three phases: (1) Two dispersals in the late Miocene, (2) six in the Pliocene, and 3) two in the late Pleistocene. Likewise, Castroviejo et al. (2014) provided a molecular-based biogeography of centrolenid frogs that showed two dispersal events from the Chocóan Region into Central America-one in the mid-Miocene and another in the earliest Pliocene. Probably at least one bolitoglossine salamander stock arrived in South America prior to the Pliocene (Hanken \& Wake 1982). Otherwise, the relatively few dispersals from Central America to South America were by species that had differentiated from a South American ancestor in Central America, e.g., four species of Craugastor (Crawford and Smith, 2005), one species of Rhinella (Santos et al. 2015), and three species of Smilisca. The only Nearctic anuran clade to enter South America is the ranid genus Lithobates, represented in South America by three species in the Lithobates palmipes Group (Hillis \& de Sa 1988).

The origin of the hylid frogs on Caribbean islands parallels that of most other groups of terrestrial vertebrates endemic to the region in being old (but not too old) and having an origin from South America (Hedges 1996; 2001; 2006). Molecular dating of many groups, showing Cenozoic origins (e.g., Heinicke et al. 2007) and geologic data showing that continuous land areas did not exist prior to the late Eocene (Iturralde-Vinent \& MacPhee 1999) rule out a popular hypothesis that the fauna arose from Proto-Antillean vicariance (Rosen 1975). Overall, the reduced higher-level taxonomic composition of Antillean groups, combined with large radiations of clades present, also supports an origin by overwater dispersal (Hedges 2006). Despite this evidence against proto-Antillean vicariance,
some researchers have continued to support vicariance for Antillean shrews (Solenodon; Roca et al. 2004) and Cuban night lizards (Cricosaura; Vicario et al. 2003), but these two groups are relictual and thus their origin can be explained by dispersal (Hedges 2006). The recent discovery of a bolitoglossine plethodontid salamander in Miocene amber in Hispaniola (Poinar \& Wake 2015), a group that is not known to occur today on Caribbean islands, indicates that yet another major group of amphibians dispersed to the islands in the past.

A variant of the vicariance theory was proposed by Iturralde-Vinent and MacPhee (1999) whereby Antillean groups arose through a dry land connection (Aves Ridge) in the mid-Cenozoic. Unfortunately, there is no firm geological evidence for the existence of such a dry land bridge, and in fact geological evidence against it (Ali 2012). Also, there is biological evidence against it in the peculiar taxonomic composition of the biota, which is the same evidence arguing against an earlier land bridge. Therefore, it is not correct to claim support for the Aves Ridge land bridge, as some authors have done (e.g., Alonso et al. 2011) simply because they obtained midCenozoic molecular clock dates for their groups. Such clock dates are also consistent with the large body of evidence supporting dispersal, and the dispersal model does not have the geological and taxonomic problems that are associated with the Aves land bridge model. The islands associated with the Aves and Lesser Antilles submarine ridges would have facilitated dispersal, especially at times of low sea level, but would not have provided a dry-land biogeographic corridor for a continental biota as envisioned by Iturralde-Vinent and MacPhee (1999). For these reasons, it is most likely that the arboranan frogs of the Caribbean islands arrived by dispersal on flotsam from South America in the mid-Cenozoic.

Three major patterns exist with respect to Beringian interchanges between Asia and North America. The first of these includes ancient related taxa in eastern Asia and eastern North America; herpetological examples are the primitive salamanders of the genera Cryptobranchus in North America and Megalobatrachus in eastern Asia (including Japan); these diverged from one another in the Cretaceous (Zhang \& Wake 2008), as did Alligator sinensis in China and A. mississippiensis in North America (Brochu 1999). Both of these examples are remnants of diverse fossils in the Holarctic and the Alligatoridae in the Neotropics as well. Within amphibians a second pattern is like the first but more recent and has Tertiary dispersal from North America to Asia; this includes the plethodontid salamander Karsenia in Korea and most relatives in eastern North America (Min et al. 2005). This is the pattern observed in the hyline genera Hyla in Eurasia and ancestral Dryophytes in North America. Within the third pattern there are two examples among anurans that exhibit Neogene migrations from Asia to North America via Beringia-ancestral Dryophytes eximius Group and ancestral Rana boylii Group (Hillis \& Wilcox 2005). Neither of these Groups occurs in eastern North America.

Most dispersal via Beringia is from Asia to North America as has been documented in a variety of organisms, e.g., butterflies (Vila et al. 2011) and pikas (Galbreath \& Hoberg 2011). Ickert-Bond et al. (2009) emphasized that although the Bering Land Bridge had been a major highway for Asian plants into North America it was a barrier to some and a filter for others. Remarkably, North American toads, Anaxyrus, did not migrate into Asia where Old World toads, Bufo, predominate; neither did acridine hylids. In Middle America many hylid frogs breed in small streams and have stream-adapted tadpoles (see Duellman 2001). This breeding behavior and associated adaptations are absent in North America, where larval salamanders of the plethodontid genera Desmognathus, Eurycea, Gyrinophilus, and Pseudotriton are abundant in streams, but these carnivorous larvae would not be in competition with herbivorous tadpoles. Another unsolved mystery!

Acknowledgments

We are indebted to Manuella Folly and Jorge Soberón for translating the abstract into Portuguese and Spanish, respectively. We are grateful to Luis A. Coloma and two anonymous reviewers for their critical comments on the manuscript, as well as Ana M. Báez for her help with the sections on fossil frogs. Photographs were kindly provided by Tom Charlton, Fred Kraus, Jose P. Pombal Jr., Pedro Peloso, Mirco Solé, and Mauro Teixeira Jr. Julie Marin, Brooke Gattens, and Angela Lu assisted in preparing the species density maps. Duellman is grateful for stimulating discussions on hylid frogs with Ivan Nunes and Linda Trueb. This work was supported by Temple University and by grants to SBH from the U.S. National Science Foundation (1136590 and 1455762).

References

Agnolin, F. (2012) A new Calyptocephalidae (Anura, Neobatrachia) from the Upper Cretaceous of Patagonia, Argentina, with comments on its systematic position. Studia Geologica Salmanticensia, 48, 129-178.
Aitchison, J.C., Ali, J.R. \& Davis, A.M. (2007) When and where did India and Asia collide? Journal of Geophysical Research, 112, B05423. http://dx.doi.org/10.1029/2006JB004706
Ali, J.R. (2012) Colonizing the Caribbean: is the GAARlandia land-bridge hypothesis gaining a foothold? Journal of Biogeography, 39, 431-433. http://dx.doi.org/10.1111/j.1365-2699.2011.02674.x
Almeida, C.J. \& Cardoso, A.J. (1985) Variabilidade em medidas dos espermatozóides de Hyla fuscovaria (Amphibia, Anura) e seu significado taxonômico. Revista Brasileira de Biologia, 35, 387-391.
Almendáriz, A., Brito, J., Batallas, D. \& Ron, S. (2014) Una especie nueva de rana arbórea del género Hyloscirtus (Amphibia: Anura: Hylidae) de la Cordillera del Cóndor. Papéis Avulsos de Zoologia, 54 (4), 33-49. http://dx.doi.org/10.1590/0031-1049.2014.54.04
Alonso, R., Crawford, A.J. \& Bermingham, E. (2011) Molecular phylogeny of an endemic radiation of Cuban toads (Bufonidae: Peltophryne) based on mitochondrial and nuclear genes. Journal of Biogeography, 39, 434-451. http://dx.doi.org/10.1111/j.1365-2699.2011.02594.x
AmphibiaWeb (2014) AmphibiaWeb: Information on Amphibian Biology and Conservation. University of California, Berkeley, California. Available from: http://amphibiaweb.org/ (accessed 23 April 2015)
Ananjeva, N.B., Orlov, N.L., Khalikov, R.G., Darevsky, I.S., Ryabov, S.A. \& Barabanov, A.V. (2006) The Reptiles of Northern Eurasia. Pensoft, Sofia, Bulgaria, 250 pp.
Anstis, M. (2013) Tadpoles and Frogs of Australia. New Holland Press, London, 829 pp.
Axelrod, D.I. (1958) Evolution of the Madro-Tertiary geoflora. Botanical Review, 24, 433-509. http://dx.doi.org/10.1007/BF02872570
Axelrod, D.I. (1972) Edaphic aridity as a factor in angiosperm evolution. American Naturalist, 106, 311-320. http://dx.doi.org/10.1086/282773
Bacon, C.D., Silvestro, D., Jaramillo, C., Smith, B.T., Chakrabarty, P. \& Antonelli, A. (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Science USA, 112, 6110-6115. http://dx.doi.org/10.1073/pnas. 1423853112
Báez, A.M. (1981) Redescription and relationships of Saltenia ibanezi, a Late Cretaceous pipid frog from northwestern Argentina. Ameghiniana, 18, 127-154.
Báez, A. \& Gómez, R.O. (2014) Is hyperossification concealing the phylogenetic signal in osteological traits in anurans? [abstract]. In: $74^{\text {th }}$ Annual Meeting of Vertebrate Paleontology, November 5-8, 2014. Berlin, Germany.
Báez, A.M., Gómez, R.O., Ribeiro, L.C.B., Martinelli, A.G., Teixeira, V.P.A. \& Ferraz, M.L.F. (2012) The diverse Cretaceous neobatrachian fauna of South America: Uberobatrachus carvalhoi, a new frog from the Maastrichtian Marília Formation, Minas Gerais, Brazil. Gondwana Research, 22, 1141-1150. http://dx.doi.org/10.1016/j.gr.2012.02.021
Báez, A.M., Moura, G.J.B. \& Gómez, R.O. (2009) Anurans from the Lower Cretaceous Crato Formation of northeastern Brazil; implications for the early divergence of neobatrachians. Cretaceous Research, 30, 829-846. http://dx.doi.org/10.1016/j.cretres.2009.01.002
Báez, A.M. \& Perí, S. (1989) Baurubatrachus pricei, nov. gen. et sp., un anuro del Cretácico Superior de Minas Gerais, Brasil. Anals da Academia Brasileira de Ciências, 61, 447-458.
Báez, A.M. \& Rage, J.-C. (1998) Pipid frogs from the Upper Cretaceous of In Beceten, Niger. Paleontology, 41, 669-691.
Báez, A.M. \& Trueb, L. (1997) Redescription of the Paleogene Shelania pascuali from Patagonia and its bearing on the relationships of fossil and Recent pipoid frogs. Scientific Papers, Natural History Museum. The University of Kansas, 4, 1-41.
Báez, A.M., Trueb, L. \& Calvo, J.O. (2000) The earliest known pipoid frog from South America: a new genus from the Middle Cretaceous of Argentina. Journal of Vertebrate Paleontology, 20, 490-500. http://dx.doi.org/10.1671/0272-4634(2000)020[0490:TEKPFF]2.0.CO;2
Barker, P.F. \& Burrell, J. (1977) The opening of the Drake Passage. Marine Geology, 25, 15-34. http://dx.doi.org/10.1016/0025-3227(77)90045-7
Batista, A., Hertz, A., Mebert, K., Köhler, G., Lotzkat, S., Ponce, M. \& Vesely, M. (2014) Two new fringe-limbed frogs of the genus Ecnomiohyla (Anura: Hylidae) from Panama. Zootaxa, 3826 (3), 449-474. http://dx.doi.org/10.11646/zootaxa.3826.3.2
Beck, R.M.D., Godthelp, H., Weisbecker, V., Archer, M. \& Hand, S.J. (2008) Australia's oldest marsupial fossils and their biogeographical implications. PLoS ONE, 3 (3), e1858. http://dx.doi.org/10.1371/journal.pone. 0001858
Beurlen, K. (1970) Geologie von Brasilien. Beiträge zur Regionalen Geologie der Erde. Band 9. Borntraeger, Berlin, 444 pp.
Bokermann, W.C.A. \& Sazima, I. (1973) Anfibios da Serra Serra di Cipó, Minas Gerais, Brasil. II. Duas espécies novas de

Hyla (Anura: Hylidae). Revista Brasileira de Biologia, 33, 521-528.
Bossuyt, F. \& Roelants, K. (2009) Anura. In: Hedges, S.B. \& Kumar, S. (Eds.), Timetree of Life. Oxford University Press., New York, pp. 357-364.
Boulenger, G.A. (1882) Catalogue of the Batrachia Salientia s. Ecaudata in the Collection of the British Museum. $2^{\text {nd }}$ Ed. Taylor and Francis, London, xvi +503 pp.
Brocchi, P. (1877) Note sur quelques batraciens hylaeformes recuilles au Mexique et au Guatemala. Bulletin de la Société Philomathique de Paris, Series 7, 1, 122-132.
Brochu, C.A. (1999) Phylogenetics, taxonomy, and historical biogeography of Alligatoroidea. Society of Vertebrate Paleontology Memoir, 6, 9-100. http://dx.doi.org/10.2307/3889340
Brundin, L. (1965) On the real nature of transantarctic relationships. Evolution, 19, 496-505. http://dx.doi.org/10.2307/2406246
Brunetti, A.E., Hermida, G.N., Luna, M.C., Barsotti, A.M.G., Jared, C., Antoniazzi, M.M., Rivera-Correa, M., Berneck, B.V.M. \& Faivovich, J. (2015) Diversity and evolution of sexually dimorphic mental and lateral glands in Cophomantini treefrogs (Anura: Hylidae: Hylinae). Biological Journal of the Linnean Society, 114, 12-34. http://dx.doi.org/10.1111/bij. 12406
Caminer, M.A. \& Ron, S.R. (2014) Systematics of treefrogs of the Hypsiboas calcaratus and Hypsiboas fasciatus species complex (Anura: Hylidae) with the description of four new species. ZooKeys, 370, 1-68. http://dx.doi.org/10.3897/zookeys.370.6291
Campbell, J.A. (1999) Distribution patterns of amphibians in Middle America. In: Duellman, W.E. (Ed.), Patterns of Distribution of Amphibians, A Global Perspective. Johns Hopkins University Press, Baltimore, Maryland, pp. 111-210.
Campbell, J.A \& Smith, E.N. (1992) A new frog of the genus Ptychohyla (Hylidae) from the Sierra de Santa Cruz, Guatemala, and description of a new genus of Middle American stream-breeding treefrogs. Herpetologica, 48, 153-167.
Cannatella, D.C. (1980) A review of the Phyllomedusa buckleyi group (Anura: Hylidae). Occasional Papers, Museum of Natural History University of Kansas, 87, 1-40.
Cannatella, D.C. (1982) Leaf-frogs of the Phyllomedusa perinesos Group (Anura: Hylidae). Copeia, 1982, 501-513. http://dx.doi.org/10.2307/1444649
Castroviejo-Fisher, S., Guayasamin, J.M., Gonzales-Voyer, A. \& Vilà, C. (2014) Neotropical diversification seen through glassfrogs. Journal of Biogeography, 41, 66-80. http://dx.doi.org/10.1111/jbi. 12208
Castroviejo-Fisher, S., Padial, J.M., Da Silva, H.R., Rojas-Runjaic, F.J.M., Medina-Méndez, E. \& Frost, D.R. (2015) Phylogenetic systematics of egg-brooding frogs (Anura: Hemiphractidae) and the evolution of direct development. Zootaxa, 4004 (1), 1-75. http://dx.doi.org/10.11646/zootaxa.4004.1.1
Coates, A.G. \& Obando, J.A. (1996) The geological evolution of the Central American isthmus. In: Jackson, J.B.C., Budd, A.F. \& Coates, A.G. (Eds.), Evolution \& Environment in Tropical America. University of Chicago Press, Chicago, pp 21-56.
Cocroft, R.B. (1994) A cladistic analysis of chorus frog phylogeny (Hylidae: Pseudacris). Herpetologica 50, 420-437.
Coloma, L.A., Carvajal-Endara, S., Dueñas, J.F., Paredes-Recalde, A., Morales-Mite, M.A., Almeida-Reinoso, D., Tapia, E.E., Hutter, C.R., Toral-Contreras, E. \& Guayasamin, J.M. (2012) Molecular phylogenetics of stream treefrogs of the Hyloscirtus larinopygion group (Anura: Hylidae), and description of two new species from Ecuador. Zootaxa, 3364 (4), 1-78. http://dx.doi.org/10.11646/zootaxa.3686.4.3
Cook, L.G. \& Crisp, M.D. (2005) Not so ancient: the extant crown group of Nothofagus represents a post-Gondwanan radiation. Proceedings of the Biological Society, 272, 2535-2544. http://dx.doi.org/10.1098/rspb.2005.3219
Crawford, A.J. \& Smith, E.N. (2005) Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 35, 536-555. http://dx.doi.org/10.1016/j.ympev.2005.03.006
Crowhurst, P.V., Hill, K.C., Foster, D.A. \& Bennett, A.P. (1996) Thermochronological and geochemical constraints on the tectonic evolution of northern Papua New Guinea. In: Hall, R. \& Blundell, B.J. (Eds.), Tectonic Evolution of South-east Asia. Geological Society of London Special Publication, 106, 525-537. http://dx.doi.org/10.1144/gsl.sp.1996.106.01.33
Darlington, P.J. (1965) Bio-geography of the southern end of the world. Harvard University Press, Cambridge, Massachusetts, 236 pp. http://dx.doi.org/10.4159/harvard. 9780674492073
Daudin, F.M. (1802) Histoire Naturelle des Rainettes, des Grenouilles, et des crapauds. Levrault, Paris, 71 pp.
Davies, H.L. (2012) The geology of New Guinea - the cordilleran margin of the Australian continent. Episodes, 35, 87-102.
de la Fuente, M.S., Sterli, J. \& Maniel, I. (2014) Origin, Evolution and Biogeographic History of South American Turtles. Springer, London, 170 pp .
http://dx.doi.org/10.1007/978-3-319-00518-8

De la Riva, I., Köhler, J., Lötters, S. \& Reiche, S. (2000) Ten years of research on Bolivian amphibians: updated checklist, distribution, taxonomic problems, literature, and iconography. Revista Española de Herpetología, 14, 18-164.
Donnelly, T.W. (1985) Mesozoic and Cenozoic plate evolution of the Caribbean Region. In: Stehli, F.G. \& Webb, S.D. (Eds.), The Great American Biotic Interchange. Plenum Press, New York, pp. 89-121. http://dx.doi.org/10.1007/978-1-4684-9181-4_4
Donovan, S.K. (2002) A karst of thousands: Jamaica's limestone scenery. Geology Today, 18, 143-151. http://dx.doi.org/10.1046/j.0266-6979.2003.00356.x
dos Santos, S.P., Ibáñez, R. \& Ron, S.R. (2015) Systematics of the Rhinella margaritifera complex (Anura: Bufonidae) from western Ecuador and Panama with insights in the biogeography of Rhinella alata. ZooKeys, 501, 109-145. http://dx.doi.org/10.3897/zookeys.501.8604
Drummond, A.J. \& Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
http://dx.doi.org/10.1186/1471-2148-7-214
Duellman, W.E. (1960) A distributional study of the amphibians of the Isthmus of Tehuantepec, Mexico. University of Kansas Publications Museum of Natural History, 13, 19-72.
Duellman, W.E. (1972a) South American frogs of the Hyla rostrata Group (Amphibia, Anura, Hylidae). Zoologische Mededelingen, Rijksmuseum van Natuurlijke Historie Leiden, 47, 177-192, pls. 1-3.
Duellman, W.E. (1972b) A review of the neotropical frogs of the Hyla bogotensis Group. Occasional Papers, Museum of Natural History University of Kansas, 11, 1-31.
Duellman, W.E. (1977) Liste der rezenten Amphibien und Reptilien Hylidae, Centrolenidae, Pseudidae. Das Tierreich, 95, xix +225 pp .
Duellman, W.E. (1999) Distribution patterns of amphibians in South America. In: Duellman, W.E. (Ed.), Patterns of Distribution of Amphibians, A Global Perspective. Johns Hopkins University Press, Baltimore, Maryland, pp. 255-328.
Duellman, W.E. (2001) Hylid frogs of Middle America. Society for the Study of Amphibians and Reptiles, Ithaca, New York, $\mathrm{xvi}+1159 \mathrm{pp}$.
Duellman, W.E. (2005) Cusco Amazónico. The Lives of Amphibians and Reptiles in an Amazonian Rainforest. Cornell University Press, Ithaca, New York, xv +433 pp.
Duellman, W.E. (2015) Marsupial Frogs, Gastrotheca and Allied Genera. Johns Hopkins University Press, Baltimore, Maryland, xv + 407 pp .
Duellman, W.E., Cadle, J.E. \& Cannatella, D.C. (1988) A new species of terrestrial Phyllomedusa (Anura: Hylidae) from southern Peru. Herpetologica, 44, 91-95.
Duellman, W.E., De la Riva, I. \& Wild, E.R. (1997) Frogs of the Hyla armata and Hyla pulchella groups in the Andes of South America, with definitions and analyses of phylogenetic relationships of Andean groups of Hyla. Scientific Papers, Natural History Museum University of Kansas, 3, 1-41. http://dx.doi.org/10.5962/bhl.title. 48689
Duellman, W.E. \& Hillis, D.M. (1990) Systematics of frogs of the Hyla larinopygion Group. Occasional Papers, Museum of Natural History University of Kansas, 134, 1-23.
Duellman, W.E. \& Lehr, E. (2009) Terrestrial Breeding Frogs (Strabomantidae) in Peru. Natur und Tier-Verlag, Münster, Germany, 382 pp.
Duellman, W.E. \& Mendelson, J.R. (1995) Amphibians and reptiles from northern Departamento Loreto, Peru: taxonomy and biogeography. University of Kansas Science Bulletin, 55, 329-376.
Duellman, W.E. \& Sweet, S.S. (1999) Distribution patterns of amphibians in the Nearctic Region of North America. In: Duellman, W.E. (Ed.), Patterns of Distribution of Amphibians, A Global Perspective. Johns Hopkins University Press, Baltimore, Maryland, pp. 31-109.
Duellman, W.E. \& Trueb, L. (1983) Frogs of the Hyla columbiana group: taxonomy and phylogenetic relationships. In: Rhodin, A.G.J. \& Miyata, K. (Eds.), Advances in Herpetology and Evolutionary Biology. Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, pp. 33-51.
Duellman, W.E. \& Wiens, J.J. (1992) The status of the hylid frog genus Ololygon and the recognition of Scinax Wagler, 1830. Occasional Papers, Museum of Natural History University of Kansas, 151, 1-23.
Duméril, A.M.C. \& Bibron, G. (1841) Erpétologie Générale ou Histoire Naturelle Compléte des Reptiles. Vol. 8. Roret, Paris, 792 pp.
Dunbar, C.O. (1961) Historical Geology, $2^{\text {nd }}$ Ed. John Wiley and Sons, New York, 500 pp.
Duque-Caro, H. (1990) Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 203-234. http://dx.doi.org/10.1016/0031-0182(90)90178-A
Durham, J.W., Arellano, A.R.V. \& Peck Jr., J.H. (1955) Evidence for no Cenozoic Isthmus of Tehuantepec seaways. Bulletin of the Geological Society of America, 66, 977-992. http://dx.doi.org/10.1130/0016-7606(1955)66[977:EFNCIO]2.0.CO;2
Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797.
http://dx.doi.org/10.1093/nar/gkh340

Estes, R. (1977) Relationships of the South African fossil frog Eoxenopoides reuningi (Anura, Pipidae). Annals of the South African Museum, 73, 49-80.
Estes, R. \& Báez, A.M. (1985) Herpetofaunas of North and South America during the late Cretaceous and Cenozoic: Evidence for Interchange? In: Stehli, F.G. \& Webb, S.D. (Eds.), The Great American Biotic Interchange. Plenum Press, New York, pp. 139-197.
http://dx.doi.org/10.1007/978-1-4684-9181-4_6
Estes, R. \& Reig, O.A. (1973) The early fossil record of frogs. A review of the evidence. In: Vial, J.L. (Ed.), Evolutionary Biology of the Anurans. University of Missouri Press, Columbia, Missouri, pp. 11-63.
Evans, S.E., Groenke, J.R., Jones, M.E.H., Turner, A.H. \& Krause, D.W. (2014) New material of Beelzebufo, a hyperossified frog (Amphibia: Anura) from the Late Cretaceous of Madagascar. PLoS ONE, 9 (1), e87236. http://dx.doi.org/10.1371/journal.pone. 0087236
Faivovich, J. (2002) A cladistic analysis of Scinax (Anura: Hylidae). Cladistics, 18, 367-393. http://dx.doi.org/10.1111/j.1096-0031.2002.tb00157.x
Faivovich, J., Haddad, C.F.B., Baêta, D., Jungfer, K.-H., Álvares, G.F.R., Brandão, R.A., Sheil, C., Barrientos, L.S., BarrioAmorós, C.L., Cruz, C.A.G. \& Wheeler, W.C. (2010) The phylogenetic relationships of the charismatic poster frogs, Phyllomedusinae (Anura, Hylidae). Cladistics, 26, 227-261. http://dx.doi.org/10.1111/j.1096-0031.2009.00287.x
Faivovich, J., Haddad, C.F.B., García, P.C.A., Frost, D.R., Campbell, J.A. \& Wheeler, W.C. (2005) Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of Natural History, 294, 1-240. http://dx.doi.org/10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2
Faivovich, J., McDiarmid, R.W. \& Myers, C.W. (2013) Two new species of Myersiohyla (Anura: Hylidae) from Cerro de la Neblina, Venezuela, with comments on other species of the genus. American Museum Novitates, 3792, 1-63. http://dx.doi.org/10.1206/3792.1
Farris, D.W., Jaramillo, C., Bayona, G., Restrepo-Moreno, S.A., Montes, C., Cardona, A., Mora, A., Speakman, R.J., Glascock, M.D. \& Valencia, V. (2011) Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39, 1007-1010. http://dx.doi.org/10.1130/G32237.1
Fouquette Jr., M.J. \& Delahoussaye, A.J. (1977) Sperm morphology in the Hyla rubra group (Amphibia, Anura, Hylidae) and its bearing on generic status. Journal of Herpetology, 11, 387-396. http://dx.doi.org/10.2307/1562720
Fouquette Jr., M.J. \& Dubois, A. (2014) A Checklist of North American Amphibians and Reptiles. Seventh Edition. Volume 1-Amphibians. Xlibris LLC, Bloomington, Indiana, 586 pp.
Freitas, R.O. de. (1951) Ensaio sobre de a tectonica moderno do Brasil. Universidade São Paulo Facultad de Filosofia, Ciencias, Letras Boletim de Geologia, 130, 1-120.
Frost, D.R. (2015) Amphibian Species of the World: an Online Reference. Version 6.0. American Museum of Natural History, New York, USA. Available from: http://research.amnh.org/herpetology/amphibia/index.html (accessed 15 September 2015)

Frost, D.R., Grant, T., Faivovich, J., Bain, R.H., Haas, A., Haddad, C.F.B., de Sá, R.O., Channing, A., Wilkinson, M., Donnellan, S.C., Raxworthy, C.J., Campbell, J.A., Blotto, B.L., Moler, P., Drewes, R.C., Nussbaum, R.A., Lynch, J.D., Green, D.M. \& Wheeler, W.C. (2006) The amphibian tree of life. Bulletin of the American Museum of Natural History, 297, 1-291. http://dx.doi.org/10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2
Funkhouser, A. (1957) A review of the neotropical tree-frogs of the genus Phyllomedusa. Occasional Papers of the Natural History Museum Stanford University, 5, 2-90.
Galbreath, K.E. \& Hoberg, E.P. (2012) Return to Beringia: parasites reveal cryptic biogeographic history of North American pikas. Proceedings of the Royal Society B, 279, 371-378. http://dx.doi.org/10.1098/rspb.2011.0482
Galloway, R.W. \& Kemp, E.M. (1981) Late Cenozoic environments in Australia. In: Keast, A. (Ed.), Ecological Biogeography of Australia. W. Junk, The Hague, pp. 51-80. http://dx.doi.org/10.1007/978-94-009-8629-9_4
Galvez, V.J. \& Morca, J. (1994) Geologia. In: Leyva, P. (Ed.), Colombia Pacífico. Vol. 1. Financiera Energética Nacional, Bogotá, pp. 80-95.
Gamble, T., Bauer, A.M., Greenbaum, E. \& Jackman, T.R. (2008) Evidence for Gondwanan vicariance in an ancient clade of gecko lizards. Journal of Biogeography, 35, 88-104. http://dx.doi.org/10.1111/j.1365-2699.2007.01770.x
Gansser, R. (1954) The Guiana Shield (S. America). Eclogae Geologicae Helvetiae, 44, 77-112.
Gehara, M., Crawford, A.J., Orrico, V.G.D., Rodríguez, A., Lötters, S., Fouquet, A., Barrientos, L.S., Brusquetti, F., De la Riva, I., Ernst, R., Urrutia, G.G., Glaw, F., Guayasamin, J.M., Hölting, M., Jansen, M., Kok, P.J.R., Kwet, A., Lingnau, R., Lyra, M., Moravec, J., Pombal, J.P., Jr., Rojas-Runjaic, F.J.M., Schulze, A., Señaris, J.C., Solé, M., Rodrigues, M.T., Twomey, E., Haddad, C.F.B., Vences, M. \& Köhler, J. (2014) High levels of diversity uncovered in a widespread nominal taxon:
continental phylogeography of the neotropical tree frog Dendropsophus minutus. PLoS One, 9 (9), e103958. http://dx.doi.org/10.1371/journal.pone. 0103958
Gregory-Wodzicki, K.M. (2000) Uplift history of the central and northern Andes: a review. Bulletin of the Geological Society of America, 112, 1091-1105.
http://dx.doi.org/10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2
Guayasamin, J.M., Rivera-Correa, M., Arteaga, A., Culebras, J., Bustamante, L., Pyron, R.A., Peñafiel, N., Morochz, C. \& Hutter, C.R. (2015) Molecular phylogeny of stream treefrogs (Hylidae: Hyloscirtus bogotensis Group), with a new species from the Andes of Ecuador. Neotropical Biodiversity, 1, 2-21.
http://dx.doi.org/10.1080/23766808.2015.1074407
Günther, A.C.L.G. ("1858" 1859) Catalogue of the Batrachia Salientia in the Collection of the British Museum. Taylor and Francis, London, xvi + 160 pp.
Günther, R. \& Richards, S.J. (2005) Three new mountain stream dwelling Litoria (Amphibia: Anura: Hylidae) from western New Guinea. Russian Journal of Herpetology, 12, 195-212.
Haddad, C.F.B., Pombal J.., J.P. \& Batistic, R.F. (1994) Natural hybridization between diploid and tetraploid species of leaffrogs, genus Phyllomedusa (Amphibia). Journal of Herpetology, 28, 425-430. http://dx.doi.org/10.2307/1564953
Haffer, J. (1974) Avian speciation in tropical South America. Publications of the Nuttall Ornithological Club, 14, 1-390.
Hanken, J. \& Wake, D.B. (1982) Genetic differentiation among plethodontid salamanders (genus Bolitoglossa) in Central and South America: implications for the South American invasion. Herpetologica, 38, 272-287.
Haq, B.U., Hardenbol, J. \& Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156-1167. http://dx.doi.org/10.1126/science.235.4793.1156
Hardy Jr., J.D. \& Burrows, R.J. (1986) Systematic status of the Spring Peeper, Hyla crucifer (Amphibia: Hylidae). Bulletin of the Maryland Herpetological Society, 22, 68-89.
Hedges, S.B. (1986) An electrophoretic analysis of Holarctic hylid frog evolution. Systematic Zoology, 35, 1-21. http://dx.doi.org/10.2307/2413287
Hedges, S.B. (1992) The number of replications needed for accurate estimation of the bootstrap p-value in phylogenetic studies. Molecular Biology and Evolution, 9, 366-369.
Hedges, S.B. (1996) Historical biogeography of West Indian vertebrates. Annual Review of Ecology and Systematics, 27, 163-196.
http://dx.doi.org/10.1146/annurev.ecolsys.27.1.163
Hedges, S.B. (2001) Caribbean biogeography: an outline. In: Woods, C.A. \& Sergile, F.E. (Eds.), Biogeography of the West Indies: Patterns and Perspectives. CRC Press, Boca Raton, Florida, pp. 15-33.
Hedges, S.B. (2006) Paleogeography of the Antilles and origin of West Indian terrestrial vertebrates. Annals of the Missouri Botanical Garden, 93, 231-244.
http://dx.doi.org/10.3417/0026-6493(2006)93[231:POTAAO]2.0.CO;2
Hedges, S.B. (2013) Revision shock in taxonomy. Zootaxa, 3681 (3), 297-298. http://dx.doi.org/10.11646/zootaxa.3681.3.11
Hedges, S.B. (2014) The high-level classification of skinks (Reptilia, Squamata, Scincomorpha). Zootaxa, 3765 (4), 317-338. http://dx.doi.org/10.11646/zootaxa.3765.4.2
Hedges, S.B. \& Conn, C.E. (2012) A new skink fauna from Caribbean islands (Squamata, Mabuyidae, Mabuyinae). Zootaxa, 3288, 1-244.
Hedges, S.B., Duellman, W.E. \& Heinicke, M.P. (2008) New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa, 1737, 1-182.
Heinicke, M.P., Duellman, W.E. \& Hedges, S.B. (2007) Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proceedings of the National Academy of Sciences, 104, 10092-97. http://dx.doi.org/10.1073/pnas. 0611051104
Heinicke, M.P., Duellman, W.E., Trueb, L., Means, D.B., MacCulloch, R.D. \& Hedges, S.B. (2009) A new frog family (Anura: Terrarana) from South America and an expanded direct-developing clade revealed by molecular phylogeny. Zootaxa, 2211, 1-35.
Hillis, D.M. \& de Sa, R. (1988) Phylogeny and taxonomy of the Rana palmipes Group (Salientia: Ranidae). Herpetological Monographs, 2, 1-26. http://dx.doi.org/10.2307/1467024
Hillis, D.M. \& Wilcox, T.P. (2005) Phylogeny of the New World true frogs (Rana). Molecular Phylogenetics and Evolution, 34, 299-314. http://dx.doi.org/10.1016/j.ympev.2004.10.007
Hoffmann, C.K. (1878) Klassen und Ordnungen der Amphibien wissenschaftlich dargestelldt in Wort un Bild. In: Bronn, H.G. (Ed.), Die Klassen und Ordnungen des Thier-Reichs wissenschaftlich dargestelldt in Wort und Bild. Vol. 6. Pt 2. C.F. Winter, Leipzig and Heidelberg, pp. 1-726.
Holman, J.A. (1961) A new hylid genus from the Lower Miocene of Florida. Copeia, 1961, 354-355. http://dx.doi.org/10.2307/1439818
Hoorn, C. (2006) The birth of the mighty Amazon. Scientific American, 294, 52-59.
http://dx.doi.org/10.1038/scientificamerican0506-52
Hoorn, C., Guerrero, J., Sarmiento, G.A. \& Lorente, M.A. (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23, 237-240. http://dx.doi.org/10.1130/0091-7613(1995)023<0237:ATAACF>2.3.CO;2
Hua, X., Fu, C., Li, J., Nieto Montes de Oca, A. \& Wiens, J.J. (2009) A revised phylogeny of holarctic treefrogs (genus Hyla) based on nuclear and mitochondrial DNA sequences. Herpetologica, 65, 246-259. http://dx.doi.org/10.1655/08-058R1.1
Ickert-Bond, S.M., Murray, D.F. \& DeChaime, E. (2009) Contrasting patterns of plant distribution in Beringia. Alaska Park Science, 8, 26-32.
Iturralde-Vinent, M.A. \& MacPhee, R.D.E. (1999) Paleogeography of the Caribbean region: implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History, 238, 1-95.
IUCN (2014) The IUCN Red List of Threatened Species. International Union for the Conservation of Nature, Cambridge, UK. Available from: http://www.iucnredlist.org (accessed 1 January 2014)
Jaillard, E., Hérail, G., Monfret, T., Diaz-Martinez, E., Baby, P., Lavenu, A. \& Dumont, J.F. (2000) Tectonic evolution of the Andes of Ecuador, Peru, Bolivia, and northernmost Chile. In: Cordani, U.G., Milani, E.J., Thomaz-Filho, A. \& Campos, D.A. (Eds.), Tectonic Evolution of South America. $31^{\text {st }}$ International Geological Congress, Rio de Janeiro, pp. 481-559.

Jeannel, R. (1967) Biogeographie de l'Amerique austral. In: Delamere Dehoutteville, C. \& Rapaport, E. (Eds.), Biologie de l'Amerique Austral. Vol. 3. C. N. R. S. Groupe Francais Argiles C. R. Reun Etud, Paris, pp. 401-460.
Jungfer, K.-H., Faivovich, J., Padial, J.M., Castroviejo-Fisher, S., Lyra, M.M., Berneck, B.V.M., Iglesias, P.P., Kok, P.J.R., MacCulloch, R.D., Rodrigues, M.T., Verdade, V.K., Torres Gastello, C.P., Chaparro, J.C., Valdujo, P.H., Reichle, S., Moravek, J., Gvoždík, V., Gagliardi-Urrutia, G., Ernst, R., De la Riva, I., Means, D.B., Lima, A.P., Señaris, J.C., Wheeler, W.C. \& Haddad, C.F.B. (2013) Systematics of spiny-backed treefrogs (Hylidae: Osteocephalus): an Amazonian puzzle. Zoologica Scripta, 42, 351-380. http://dx.doi.org/10.1111/zsc. 12015
King, P.B. (1958) Evolution of modern surface features in western North America. In: Hubbs, C.L. (Ed.), Zoogeography. American Association for the Advancement of Science, Washington, DC, pp. 3-60.
Kluge, A.G. (1979) The gladiator frogs of Middle America and Colombia-a reevaluation of their systematics (Anura: Hylidae). Occasional Papers of the Museum of Zoology, University of Michigan, 688, 1-24.
Köhler, J., Koscinski, D., Padial, J.M., Chaparro, J.C., Handford, P., Lougheed, S.C. \& De la Riva, I. (2010) Systematics of Andean gladiator frogs of the Hypsiboas pulchellus species group (Anura, Hylidae). Zoologica Scripta, 39, 572-590. http://dx.doi.org/10.1111/j.1463-6409.2010.00448.x
Kolenc, F., Borteiro, C. \& Tedros, M. (2003) La larva de Hyla uruguaya Schmidt, 1944 (Anura: Hyodae), con comentarios sobre su biología en Uruguay y su status taxonómico. Cuadernos de Herpetología, 17, 87-100.
Lanfear, R., Calcott, B., Ho, S.Y.W. \& Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695-1701. http://dx.doi.org/10.1093/molbev/mss020
Lanfear, R., Calcott, B., Kainer, D., Mayer, C. \& Stamatakis, A. (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology, 14, 82. http://dx.doi.org/10.1186/1471-2148-14-82
Latrubesse, E.M., Cozzuol, M., da Silva-Caminha, S.A.F., Rigsby, C.A., Absy, M.L. \& Jaramillo, C. (2010) The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth-Science Reviews, 99, 99-124. http://dx.doi.org/10.1016/j. earscirev.2010.02.005
Lawyer, L.A. \& Gahagan, L.M. (1998) Opening of the Drake Passage and its impact on Cenozoic ocean circulation. In: Crowley, T.J. \& Burke, K.C. (Eds.), Tectonic Boundary Conditions for Climate Reconstruction. Oxford Monographs on Geology and Geophysics, 39, Oxford, UK, pp. 212-223.
Lemmon, E.M., Lemmon, A.R. \& Cannatella, D.C. (2007) Geological and climatic forces driving speciation in the continentally distributed trilling chorus frogs (Pseudacris). Evolution, 61, 2086-2103. http://dx.doi.org/10.1111/j.1558-5646.2007.00181.x
Li, Z.X. \& Powell, C.McA. (2001) An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews, 53, 237-277.
http://dx.doi.org/10.1016/S0012-8252(00)00021-0
Lötters, S., Reichle, S., Faivovich, J. \& Bain, R.H. (2005) The stream-dwelling tadpole of Hyloscirtus charazani (Anura: Hylidae) from Andean Bolivia. Studies on Neotropical Fauna and Environment, 40, 181-185. http://dx.doi.org/10.1080/01650520500309735
Lutz, B. (1966) Pithecopus ayeaye, a new Brazilian hylid with vertical pupils and grasping feet. Copeia, 1966, 236-240. http://dx.doi.org/10.2307/1441130
Lynch, J.D. \& Duellman, W.E. (1997) Frogs of the genus Eleutherodactylus in western Ecuador. Special Publications, Natural History Museum, University of Kansas, 23, 1-236.
Macqueen, P., Seddon, J.M., Austin, J.J., Hamilton, S. \& Goldizen, A.W. (2010) Phylogenetics of the pademelons (Macropodidae: Thylogale) and historical biogeography of the Australo-Papuan region. Molecular Phylogenetics and Evolution, 57, 1134-1148.
http://dx.doi.org/10.1016/j.ympev.2010.08.010
McCranie, J.R. \& Wilson, L.D. (2002) The Amphibians of Honduras. Society for the Study of Amphibians and Reptiles, Ithaca, New York, $\mathrm{x}+625 \mathrm{pp}$.
McKenna, M.C. (1975) Fossil mammals and Early Eocene North Atlantic land continuity. Annals of the Missouri Botanical Garden, 62, 335-353. http://dx.doi.org/10.2307/2395200
McLoughlin, S. (2001) The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49, 271-300. http://dx.doi.org/10.1071/BT00023
Mendelson, J.R., III, Savage, J.M., Griffith, E., Ross, H., Kubicki, B. \& Gagliardo, R. (2008) Spectacular new gliding species of Ecnomiohyla (Anura: Hylidae) from central Panama. Journal of Herpetology, 42, 750-759. http://dx.doi.org/10.1670/08-025R1.1
Menzies, J. (2006) The Frogs of New Guinea and the Solomon Islands. Pensoft Publishers, Sofia, Bulgaria, x +345 pp.
Menzies, J.I. (2014) Notes on Nyctimystes (Anura: Hylidae), tree frogs of New Guinea, with descriptions of four new species. Alytes, 30, 42-68.
Menzies, J.I. \& Tippet, J. (1976) Chromosome numbers of Papuan hylid frogs and the karyotype of Litoria infrafrenata (Amphibia, Anura, Hylidae). Journal of Herpetology, 10, 167-173. http://dx.doi.org/10.2307/1562977
Miller, M.A., Pfeiffer, W. \& Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, Louisiana, pp. 1-8. http://dx.doi.org/10.1109/GCE.2010.5676129
Min, M.S., Yang, S.Y., Bonett, R.M., Vieites, D.R., Brandon, R.A. \& Wake, D.B. (2005) Discovery of the first Asian plethodontid salamander. Nature, 435, 87-90. http://dx.doi.org/10.1038/nature03474
Mittleman, M.B. \& List, J.C. (1953) The generic differentiation of the swamp treefrogs. Copeia, 1953, 80-83. http://dx.doi.org/10.2307/1440129
Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez-Angel, L.C., Rodriguez-Parra, L.A., Ramirez, V. \& Niño, H. (2015) Middle Miocene closure of the Central American Seaway. Science, 348 (6231), 226-229. http://dx.doi.org/10.1126/science.aaa2815
Mora, A., Baby, P., Roddaz, M., Parra, M., Brusset, S., Hermoza, W. \& Espurt, N. (2010) Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In: Hoorn, C. \& Wesselingh, F.P. (Eds.), Amazonia, Landscape and Species Evolution: A Look into the Past. Wiley-Blackwell Publishing, Ltd., Hoboken, New Jersey, pp. 38-60.
Muzzoppapa, P. \& Báez, A.M. (2009) Systematic status of the mid-Tertiary neobatrachian frog Calyptocephalella canqueli from Patagonia (Argentina), with comments on the evolution of the genus. Ameghiniana, 46, 113-125.
Nascimento, F.A.C.d. \& Skuk, G.O. (2007) Description of the tadpole of Hylomantis granulosa (Anura: Hylidae). Zootaxa, 1663, 59-65.
Nieden, F. (1923) Anura I. Subordo Aglossa und phaneroglossa, Sectio 1, Arcifera. Das Tierreich, 46, xxxii +584.
Ortega-Andrade, H.M., Bermingham, J., Aulestia, C. \& Paucar, C. (2010) Herpetofauna of the Bilsa Biological Station, Province of Esmeraldas, Ecuador. Checklist, 6, 119-154.
Padial, J.M., Grant, T. \& Frost D.R. (2014) Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria. Zootaxa, 3825 (1), 1-132. http://dx.doi.org/10.11646/zootaxa.3825.1.1
Pauly, G.B., Hillis, D.M. \& Cannatella, D.C. (2004) The history of a Nearctic colonization: molecular phylogenetics and biogeography of the Nearctic toads (Bufo). Evolution, 58, 2517-2535. http://dx.doi.org/10.1111/j.0014-3820.2004.tb00881.x
Peixoto, O.L. (1987) Characterização do grupo "perpusillus" e revalidação da posição taxonómica de Ololygon perpusilla perpusilla e Ololygon perpusilla v-signata (Amphibia, Anura, Hyidae). Arquivos da Universidade Federal Rural do Rio de Janeiro, 10, 37-49.
Pimenta, B.V.S., Faivovich, J. \& Pombal, J. (2007a) On the identity of Hyla strigilata Spix, 1824 (Anura: Hylidae): redescription and neotype designation for a "ghost" taxon. Zootaxa, 1441, 35-49.
Pimenta, B.V.S., Nunes, I. \& Cruz, C.A.G. (2007b) Notes on the poorly known phyllomedusine frog Hylomantis aspera Peters 1872 (Anura, Hylidae). South American Journal of Herpetology, 2, 206-214. http://dx.doi.org/10.2994/1808-9798(2007)2[206:NOTPKP]2.0.CO;2
Pinto-Sánchez, N.R., Ibáñez, R., Madriñán, S., Sanjur, O.I., Bermingham, E. \& Crawford, A.J. (2012) The Great American biotic interchange in frogs: multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Molecular Phylogenetics and Evolution, 62, 954-972. http://dx.doi.org/10.1016/j.ympev.2011.11.022
Pittman, W.C., III, Cande, S., LaBrecque, J. \& Pindell, J. (1993) Fragmentation of Gondwana: the separation of Africa from

South America. In: Goldblatt, P. (Ed.), Biological Relationships between Africa and South America. Yale University Press, New Haven, Connecticut, pp. 15-34.
Poinar, G., Jr. \& Wake, D.B. (2015) Paleoplethodon hispaniolae gen. n., sp. n. (Amphibia: Caudata), a fossil salamander from the Caribbean. Palaeodiversity, 8, 21-28.
Pombal Jr., J.P. \& Gordo, M. (1991) Duas novas espécies de Hyla da floresta atlântica no Estado do São Paulo (Amphibia, Anura). Memorias do Instituto Butantan, 53, 135-144.
Pombal Jr., J.P. \& Haddad, C.F.B. (1992) Espécies de Phyllomedusa do grupo burmeisteri do Brasil oriental, com descrição de uma espécie nova (Amphibia, Hylidae). Revista Brasileira de Biologia, 52, 217-229.
Poole, I. \& Cantrill, D.J. (2006) Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record. In: Francis, J.E. Pirrie, D. \& Crame, J.A. (Eds.), Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica. Geological Society, London, Special Publications 258, London, pp. 63-81.
Pyron, R.A. (2014) Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians. Systematic Biology, 63, 779-797. http://dx.doi.org/10.1093/sysbio/syu042
Pyron, R.A., Burbrink, F.T., Colli, G.R., Montes de Oca, A.N., Vitt, L.J., Kuczynski, C.A. \& Wiens, J.J. (2011) The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Molecular Phylogenetics and Evolution, 58, 329-342.
http://dx.doi.org/10.1016/j.ympev.2010.11.006
Pyron, R.A., Burbrink, F.T. \& Wiens, J.J. (2013) A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93. http://dx.doi.org/10.1186/1471-2148-13-93
Pyron, R.A. \& Wiens, J.J. (2011) A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61, 543-583. http://dx.doi.org/10.1016/j.ympev.2011.06.012
Pyron, R.A. \& Wiens, J.J. (2013) Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proceedings of the Royal Society B, 280, 1-10. http://dx.doi.org/10.1098/rspb.2013.1622
Richards, S.J. \& Oliver, P.M. (2006) Two new species of large green canopy-dwelling frogs (Anura: Hylidae: Litoria) from Papua New Guinea. Zootaxa, 1295, 41-60.
Rivera-Correa, M. \& Faivovich, J. (2013) A new species of Hyloscirtus (Anura: Hylidae) from Colombia, with a rediagnosis of Hyloscirtus larinopygion (Duellman, 1973). Herpetologica, 69, 298-313. http://dx.doi.org/10.1655/HERPETOLOGICA-D-12-00059
Roca, A.L., Bar-Gal, G.K., Eizirik, E., Helgen, K.M., Maria, R., Springer, M.S., O'Brien, S.J. \& Murphy, W.J. (2004) Mesozoic origin for West Indian insectivores. Nature, 429, 649-651. http://dx.doi.org/10.1038/nature02597
Roelants, K., Gower, D.J., Wilkinson, M., Loader, S.P., Biju, S.D., Guillaume, K., Moriau, L. \& Bossuyt, F. (2007) Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences USA, 104, 887-892.
http://dx.doi.org/10.1073/pnas. 0608378104
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. \& Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-42. http://dx.doi.org/10.1093/sysbio/sys029
Rosen, D.E. (1975) A vicariance model of Caribbean biogeography. Systematic Zoology, 24, 431-464. http://dx.doi.org/10.2307/2412905
Ruane, S., Pyron, R.A. \& Burbrink, F.T. (2011) Phylogenetic relationships of the Cretaceous frog Beelzebufo from Madagascar and the placement of fossil constraints based on temporal and phylogenetic evidence. Journal of Evolutionary Biology, 24, 274-285.
http://dx.doi.org/10.1111/j.1420-9101.2010.02164.x
Ruibal, R. \& Shoemaker, V. (1984) Osteoderms in anurans. Journal of Herpetology, 18, 313-328. http://dx.doi.org/10.2307/1564085
Sánchez, D.A. (2010) Larval development and synapomorphies for species groups of Hyloscirtus Peters, 1882 (Anura: Hylidae: Cophomantini). Copeia, 2010, 351-363. http://dx.doi.org/10.1643/CH-10-010
Sanchiz, B. (1998a) Salientia. Encyclopedia of Paleoherpetology. Verlag Dr. Friedrich Pfeil, München, xii +275 pp.
Sanchiz, B. (1998b) Vertebrates from the Early Miocene lignite deposits of the opencast mine Oberdorf (western Styrian Basin, Austria). 2. Amphibia. Annalen des Naturhistorischen Museums in Wien, 1999, 13-29.
Sanmartín, I. \& Ronquist, F. (2004) Southern Hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Systematic Biology, 53, 216-243. http://dx.doi.org/10.1080/10635150490423430
Santos, J.C., Coloma, L.A., Summers, K., Caldwell, J.P., Ree, R. \& Cannatella, D.C. (2009) Amazonian amphibian diversity is
primarily derived from late Miocene Andean lineages. PLoS Biology, 7 (3), e1000056. http://dx.doi.org/10.1371/journal.pbio. 1000056
Savage, J.M. \& Kubicki, B. (2010) A new species of fringe-limbed frog, genus Ecnomiohyla (Anura: Hylidae) from the Atlantic slope of Costa Rica, Central America. Zootaxa, 2719, 21-34.
Schmidt, K.P. (1953) A Checklist of North American Amphibians and Reptiles, 6th Ed. University of Chicago Press, Chicago, 280 pp.
Schuchert, C. (1935) Historical Geology of the Antillean-Caribbean Region. John Wiley and Sons, New York, xxvi +811 pp.
Shackleton, N.J. \& Kennett, J.P. (1975) Palaeotemperature history of the Cenozoic, and the initiation of Antarctic glaciation: oxygen and carbon isotope analysis in DSDP sites 277, 279, 281. Initial Report of the Deep Sea Drilling Project, 29, 743-755.
Sindaco, R. \& Jeremcenko, V.K. (2008) The Reptiles and Amphibians of the Western Palearctic. Edizioni Belevedere, Latina, Italy, 580 pp .
Sioli, H. (Ed.) (1984) The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin. W. Junk, Dordrecht, The Netherlands, 762 pp . http://dx.doi.org/10.1007/978-94-009-6542-3
Springer, M.S., Westerman, M., Kavanagh, J.R., Burk, A., Woodburne, M.O., Kao, D.J. \& Krajewski, C. (1998) The origin of the Australasian marsupial fauna and the phylogenetic affinities of the enigmatic monito del monte and marsupial mole. Proceedings of the Royal Society of London Series B-Biological Sciences, 265, 2381-2386. http://dx.doi.org/10.1098/rspb.1998.0587
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313.
http://dx.doi.org/10.1093/bioinformatics/btu033
Stamatakis, A., Hoover, P. \& Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML Web Servers. Systematic Biology, 57, 758-771.
http://dx.doi.org/10.1080/10635150802429642
Stejneger, L. (1907) Herpetology of Japan and adjacent territory. Bulletin of the United States National Museum, 58, xx +577 pp.
Stöck, M., Dubey, S., Klütsh, C., Litvinchuk, S.N., Scheidt, U. \& Perrin, N. (2008) Mitochondrial and nuclear phylogeny of circum-Mediterranean treefrogs from the Hyla arborea group. Molecular Phylogenetics and Evolution, 49, 1019-1024. http://dx.doi.org/10.1016/j.ympev.2008.08.029
Suárez, P., Cardozo, D., Baldo, D., Pereyra, M.O., Faivovich, J., Orrico, V.G.D., Catroli, G.F., Grabiele, M., Bernarde, P.S., Nagamachi, C.Y., Haddad, C.F.B. \& Pieczarka, J.C. (2013) Chromosome evolution in Dendropsophini (Amphibia, Anura, Hylinae). Cytogenetic and Genome Research, 141, 295-308. http://dx.doi.org/10.1159/000354997
Szczerbak, N.N. (2003) Guide to the Reptiles of the Eastern Palearctic. Krieger Publishing Company, Malabar, Florida, 350 pp.
Tamura, K., Battistuzzi, F.U., Billing-Ross, P., Murillo, O., Filipski, A. \& Kumar, S. (2012) Estimating divergence times in large molecular phylogenies. Proceedings of the National Academy of Sciences USA, 109, 19333-19338. http://dx.doi.org/10.1073/pnas. 1213199109
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. \& Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics and Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739. http://dx.doi.org/10.1093/molbev/msr121
Tamura, K., Stecher, G., Peterson, D., Filipski, A. \& Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725-2729.
http://dx.doi.org/10.1093/molbev/mst197
Townsend, T.M., Mulcahy, D.G., Noonan, B.P., Sites, J.W., Jr., Kuczynski, C.A., Wiens, J.J. \& Reeder, T.W. (2011) Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Molecular Phylogenetics and Evolution, 61, 363-380. http://dx.doi.org/10.1016/j.ympev.2011.07.008
Trueb, L. (1970) Evolutionary relationships of casque-headed tree frogs with co-ossified skulls (family Hylidae). University of Kansas Publications Museum of Natural History, 18, 547-716.
Trueb, L. (1999) The Early Cretaceous pipoid anuran, Thoraciliacus: redescription, revaluation, and taxonomic status. Herpetologica, 55, 139-157.
Trueb, L., Ross, C.F. \& Smith, R. (2005) A new pipoid anuran from the Late Cretaceous of South Africa. Journal of Vertebrate Paleontology, 25, 533-547. http://dx.doi.org/10.1671/0272-4634(2005)025[0533:ANPAFT]2.0.CO;2
Tschudi, J.J.v. (1838) Classification der Batrachier mit Berücksichtigung der fossilen Thiere dieser Abtheilung der Reptilien. Petitpierre, Neuchâtel, 100 pp.
http://dx.doi.org/10.5962/bhl.title. 59545
Tyler, M.J. (1968) Papuan hylid frogs of the genus Hyla. Zoologische Verhandelingen, Rijksmusem van Natuurlijke Historie,

96, 1-203, 4 pls.
Tyler, M.J. (1971) The phylogenetic significance of vocal sac structure in hylid frogs. University of Kansas Publications Museum of Natural History, 19, 319-360.
Tyler, M.J. (1976) Comparative osteology of the pelvic girdle of Australian frogs and description of a new fossil genus. Transactions of the Royal Society of South Australia, 100, 3-14.
Tyler, M.J. (1979) Herpetofaunal relationships of South America with Australia. Pp. 73-106 in Duellman, W.E. (Ed.), The South American herpetofauna, its origin, evolution, and dispersal. Monograph of the Museum of Natural History, The University of Kansas, 7, 1-485.
Tyler, M.J. (1982) Tertiary frogs from South Australia. Alcheringa, 6, 101-103. http://dx.doi.org/10.1080/03115518208566990
Tyler, M.J. (1991) A large new species of Litoria (Anura: Hylidae) from the Tertiary of Queensland. Transactions of the Royal Society of South Australia, 115, 103-105.
Tyler, M.J. (1994) Hylid frogs from the mid-Miocene Camfield beds of northern Australia. Beagle Records Museum and Art Galleries of the Northern Territory, 11, 141-144.
Tyler, M.J. \& Davies, M. (1979) Redefinition and evolutionary origin of the Australopapuan hylid frog genus Nyctimystes Stejneger. Australian Journal of Zoology, 27, 755-772.
$\mathrm{http}: / / \mathrm{dx}$. doi.org/10.1071/ZO9790755
Valeton, I. (1973) Latérite als Leithorizonte sur Rekonstruktion tektonischer Vorgänge auf den Festländern. Beispeil: Guianaschild. Geologische Rundschau, 62, 153-161.
http://dx.doi.org/10.1007/BF01826822
van der Hammen, T. (1974) The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography, 1, 3-26. http://dx.doi.org/10.2307/3038066
Veevers, J.J., Powell, C.McA. \& Roots, S.R. (1991) Review of seafloor spreading around Australia. I. Synthesis of the pattern of spreading. Australian Journal of Earth Sciences, 38, 373-389.
http://dx.doi.org/10.1080/08120099108727979
Venâncio, N.M. \& Melo-Sampaio, P.R. (2010) Reproductive behavior of the giant leaf-frog Phyllomedusa bicolor (Anura: Hylidae) in the western Amazon. Phyllomedusa, 9, 63-67. http://dx.doi.org/10.11606/issn.2316-9079.v9ilp63-67
Vences, M., Guayasamin, J.M., Miralles, A. \& De la Riva, I. (2013) To name or not to name: Criteria to promote economy of change in Linnaean classification schemes. Zootaxa, 3636 (2), 201-244. http://dx.doi.org/10.11646/zootaxa.3636.2.1
Vicario, S., Caccone, A. \& Gauthier, J. (2003) Xantusiid "night" lizards: a puzzling phylogenetic problem revisited using likelihood-based Bayesian methods on mtDNA sequences. Molecular Phylogenetics and Evolution, 26, 243-261. http://dx.doi.org/10.1016/S1055-7903(02)00313-5
Vidal, N. \& Hedges, S.B. (2009) The molecular evolutionary tree of lizards, snakes, and amphisbaenians. CR Biologies, 332, 129-139.
http://dx.doi.org/10.1016/j.crvi.2008.07.010
Vila, R., Bell, C.D., Macniven, R., Goldman-Huertas, B., Ree, R.H., Marshall, C.R., Bálint, Z., Johnson, K., Benyamini, D. \& Pierce, N.E. (2011) Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proceedings of the Royal Society B, 278, 2737-2744. http://dx.doi.org/10.1098/rspb.2010.2213
Wagler, J. (1830) Natürliches System der Amphibien, mit vorangehender Classification der Säugthiere und Vogel. Ein Beitrag zur vergleichenden Zoologie. J. G. Cotta, München, Stuttgart and Tübingen, 354 pp .
Wiens, J.J. (2007) Global patterns of diversification and species richness in amphibians. American Naturalist, 170, S86-S106. http://dx.doi.org/10.1086/519396
Wiens, J.J. (2011) Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo's law. Evolution, 65, 1283-1296. http://dx.doi.org/10.1111/j.1558-5646.2011.01221.x
Wiens, J.J., Fetzner, J.W., Jr., Parkinson, C.L. \& Reeder, T.W. (2005) Hylid frog phylogeny and sampling strategies for speciose clades. Systematic Biology, 54, 778-807. http://dx.doi.org/10.1080/10635150500234625
Wiens, J.J., Kuczynski, C.A., Hua, X. \& Moen, D.S. (2010) An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data. Molecular Phylogenetics and Evolution, 55, 871-882. http://dx.doi.org/10.1016/j.ympev.2010.03.013
Wolfe, J.A. \& Hopkins, D.M. (1967) Climate changes recorded by Tertiary land floras in northwestern North America. In: Haiti, K. (Ed.), Tertiary Correlations and Climatic Changes in the Pacific. $11^{\text {h }}$ Pacific Science Congress Symposium 25, Sandai, Sasaki, Japan, pp. 67-76.
Woodburne, M.O. \& Case, J.A. (1996) Dispersal, vicariance, and the late Cretaceous to early tertiary land mammal biogeography from South America to Australia. Journal of Mammalian Evolution, 3, 121-161. http://dx.doi.org/10.1007/BF01454359

Zeil, W. (1979) The Andes: A Geological Review. Gebrüder Borntraeger, Berlin, 250 pp .
Zhang, P. \& Wake, D.B. (2009) Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 53, 492-508. http://dx.doi.org/10.1016/j.ympev.2009.07.010
Zweifel, R.G. (1958) Results of the Archbold Expeditions No. 78. Frogs of the Papuan hylid genus Nyctimystes. American Museum Novitates, 1896, 1-51.
APPENDIX 1. GenBank accession numbers.

Species	\# of genes	12S	16S	28S	cmyc 2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
\# of accessions in alignment		472	457	143	120	98	97	81	278	47	30
Acris blanchardi	3	---	---	---	---	---	---	---	EF988105	---	---
Acris crepitans	17	FJ882758	EF107181	AY844194	AY819194	AY819268	---	EF107468	EF988131	DQ284107	EF 107244
Acris gryllus	9	EF566971		---	---	---	KJ536151	---	EF988146	---	---
Hyliola cadaverina	10	AY819365	EF472006	AY844334	AY819200	AY819274	---	---	FJ599871	---	---
Hyliola hypochondriaca	2	---	---	---	---	---	KJ536162	---	KJ536199	---	---
Hyliola regilla	11	AY819376	AY291112	---	AY819211	AY819285	KJ536164	---	EU834883	---	---
Hyliola sierra	2	---	---	---	---	---	KJ536166	---	KJ536201	---	---
Pseudacris brachyphona	5	AY326049		---	---	---	KJ536184	---	KJ536210	---	---
Pseudacris brimleyi	4	EF472036	AY291094	---	---	---	KJ536183	---	KJ536212	---	---
Pseudacris clarkii	5	AY291093		---	---	---	KJ536179	---	KJ536214	---	---
Pseudacris crucifer	14	AY819385	AY843735	DQ283478	AY819220	AY819294	KJ536167	---	EF988160	DQ284114	---
Pseudacris feriarum	5	EF472221	EF472212	---	---	---	KJ536176	---	KJ536221	---	---
Pseudacris fouquettei	5	AY291085		---	---	---	KJ536169	---	KJ536226	---	---
Pseudacris illinoensis	5	EF472010	AY291110	---	---	---	KJ536158	---	KJ536209	---	---
Pseudacris kalmi	5	EF472230	AY291087	---	---	---	KJ536172	---	KJ536222	---	---
Pseudacris maculata	7	EF472135	AY291092	---	---	---	KJ536181	---	EF988161	---	---
Pseudacris nigrita	9	EF472231		---	AY819221	AY819295	KJ536170	---	AY210862	---	---
Pseudacris ocularis	11	AY291098		---	DQ055781	DQ055752	KJ536152	---	AY843982	---	---
Pseudacris ornata	4	AY291106		---	---	---	KJ536155	---	GU985379	---	---
Pseudacris streckeri	5	EF472009	AY291108	---	---	---	KJ536156	---	AY210861	---	---
Pseudacris triseriata	9	EF472160		AY844335	---	---	KJ536175	---	AY843984	---	---
Aplastodiscus albofrenatus	3	AY819422	AY819539	---	---	---	---	---	---	---	---
Aplastodiscus albosignatus	8	AY843596		AY844219	---	---	---	---	AY843817	---	---
Aplastodiscus arildae	8	AY843604		AY844223	---	---	---	---	AY843825	---	---
Aplastodiscus callipygius	8	AY843614		AY844236	---	---	---	---	AY843840	---	---
Aplastodiscus cavicola	6	AY843617		---	---	---	---	---	AY843843	---	---
Aplastodiscus cochranae	8	AY843568		AY844200	---	---	---	---	AY843790	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28 S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Aplastodiscus eugenioi	7	AY843669		---	---	---	---	KF751465	AY843913	---	---
Aplastodiscus leucopygius	10	AY843638		AY844261	---	---	---	KF751466	AY843873	---	---
Aplastodiscus perviridis	11	AY843569		AY844201	---	---	---	KF751467	AY843791	DQ284044	---
Aplastodiscus weygoldti	6	AY843685		---	---	---	---	---	AY843931	---	---
Bokermannohyla astartea	9	AY549322		AY844225	AY819198	AY819272	---	---	AY549375	---	---
Bokermannohyla circumdata	10	AY549328		AY844242	---	---	---	KF751468	AY549381	---	---
Bokermannohyla hylax	8	AY549338		AY844254	---	---	---	---	AY549391	---	---
Bokermannohyla itapoty	2	---	---	---	---	---	---	KF751469	---	---	---
Bokermannohyla martinsi	7	AY843641		AY844264	---	---	---	---	AY843878	---	---
Bokermannohyla oxente	1	---	---	---	---	---	---	KF751470	---	---	---
Colomascirtus armatus	10	AY819423	AY549321	AY844224	---	---	---	---	AY549374	DQ284070	---
Colomascirtus charazani	8	AY843618		AY844239	---	---	---	---	AY843844	---	---
Colomascirtus criptico	2	JX155814	JX155841	---	---	---	---	---	---	---	---
Colomascirtus larinopygion	2	JX155818	JX155845	---	---	---	---	---	---	---	---
Colomascirtus lindae	2	DQ380361	JX155849	---	---	---	---	---	---	---	---
Colomascirtus pacha	2	AY326057		---	---	---	---	---	---	---	---
Colomascirtus pantostictus	2	AY326052		---	---	---	---	---	---	---	---
Colomascirtus princecharlesi	2	JX155806	JX155833	---	---	---	---	---	---	---	---
Colomascirtus psarolaimus	2	JX155809	JX155836	---	---	---	---	---	---	---	---
Colomascirtus ptychodactylus	2	JX155804	JX155831	---	---	---	---	---	---	---	---
Colomascirtus staufferorum	2	JX155816	JX155842	---	---	---	---	---	---	---	---
Colomascirtus tapichalaca	8	AY563625		AY844297	---	---	---	KF751474	AY563627	---	---
Colomascirtus tigrinus	2	JX155810	JX155837	---	---	---	---	---	---	---	---
Hyloscirtus alytolylax	2	JX155798	JX155826	---	---	---	---	---	---	---	---
Hyloscirtus colymba	15	AY843620		AY844243	AY819323	AY819316	FJ766731	KF751472	AY843848	---	---
Hyloscirtus lascinius	1	DQ380359	---	---	---	---	---	---	---	---	---
Hyloscirtus palmeri	15	AY843650		AY844273	AY819324	AY819317	FJ766733	KF751473	AY843890	DQ284088	---
Hyloscirtus phyllognathus	2	DQ380369	JX155827	---	---	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Hyloscirtus simmonsi	5	DQ380376	---	---	AY819325	AY819318	---	---	---	---	---
Hypsiboas aguilari	8	HM444782	HM444783	KF751464	---	---	---	KF751475	HM444762	---	---
Hypsiboas albomarginatus	10	AY549316		AY844218	---	---	---	KF751476	AF549302	---	---
Hypsiboas albopunctatus	9	AY549317		---	---	---	JQ627301	---	AY549370	---	---
Hypsiboas alfaroi	5	KF955303	KF955305	---	---	---	KF955306	---	---	---	---
Hypsiboas almendarizae	2	KF955304	---	---	---	---	---	---	---	---	---
Hypsiboas balzani	7	AY549323		AY844226	---	---	---	---	AY549376	---	---
Hypsiboas benitezi	8	AY843606		AY844227	---	---	---	KF751477	AY843830	---	---
Hypsiboas bischoffi	5	AY549324		---	---	---	---	---	AY549377	---	---
Hypsiboas boans	13	AY843610		AY844231	AY819199	AY819273	---	KF751478	AY843835	DQ284086	---
Hypsiboas caingua	9	AY549326		AY844234	---	---	---	KF751479	AY549379	---	---
Hypsiboas caipora	1	---	---	---	---	---	---	---	---	---	---
Hypsiboas calcaratus	6	AY326056		AY844235	---	---	---	---	AY843839	---	---
Hypsiboas callipleura	3	---	HM480426	---	---	---	---	---	HM535341	---	---
Hypsiboas cinerascens	9	AY549336		DQ283466	---	---	---	KF751480	AY549389	DQ284076	---
Hypsiboas cordobae	10	AY549331		AY844244	---	---	---	KF751481	AY549384	---	---
Hypsiboas crepitans	7	AY843621		---	---	---	---	KF751482	AY843850	---	---
Hypsiboas curupi	1	---	---	---	---	---	---	KF751483	---	---	---
Hypsiboas dentei	3	EF376018	AF467270	---	---	---	---	---	---	---	---
Hypsiboas ericae	7	AY549332		---	---	---	---	---	AY549385	---	---
Hypsiboas faber	8	AY549334	AY549333	---	---	---	JQ627303	---	AY549387	---	---
Hypsiboas fasciatus	6	AY819427	EU201109	---	---	---	---	---	AY549388	---	---
Hypsiboas geographicus	4	AY843628		---	---	---	---	---	---	---	---
Hypsiboas gladiator	2	---	HM480406	---	---	---	---	---	HM535328	---	---
Hypsiboas guentheri	7	AY843631	AY549337	AY844253	---	---	---	---	AY549390	---	---
Hypsiboas heilprini	8	AY843632		---	EU034037	---	---	---	EU034062	---	---
Hypsiboas joaquini	9	AY549340	AY549339	AY844256	---	---	---	KF751484	AY549393	---	---
Hypsiboas lanciformis	9	AY326054		AY844258	---	---	---	---	AY843870	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Hypsiboas latistriatus	6	AY549360		AY844293	---	---	---	---	AY843921	---	---
Hypsiboas lemai	10	AY843637		AY844259	---	---	---	KF751485	AY843871	---	---
Hypsiboas leptolineatus	9	AY549341		AY844260	---	---	---	---	AY549394	---	---
Hypsiboas lundii	7	AY843639		AY844262	---	---	---	---	AY843874	---	---
Hypsiboas maculateralis	1	---	---	---	---	---	---	---	---	---	---
Hypsiboas marginatus	9	AY549342		AY844263	---	---	---	KF751486	AY549395	---	---
Hypsiboas marianitae	7	AY362977		---	---	---	---	---	AY549397	---	---
Hypsiboas melanopleura	6	HM444772	HM444778	---	---	---	---	KF751487	HM444756	---	---
Hypsiboas microderma	5	AY843644		AY844267	---	---	---	---	AY843881	---	---
Hypsiboas multifasciatus	12	AY843648		AY844270	---	---	---	GQ365986	AY843887	---	---
Hypsiboas nympha	9	AY843670		AY844289	---	---	---	KF751488	AY843914	---	---
Hypsiboas ornatissimus	3	EF376019	EF376056	---	---	---	---	---	---	---	---
Hypsiboas palaestes	2	---	HM480414	---	---	---	---	---	HM535351	---	---
Hypsiboas pardalis	7	AY843651		---	---	---	---	---	AY843891	---	---
Hypsiboas pellucens	2	AY326058		---	---	---	---	---	---	---	---
Hypsiboas picturatus	2	AY326055		---	---	---	---	---	---	---	---
Hypsiboas polytaenius	10	AY843655		---	AY819209	AY819283	---	---	AY843895	---	---
Hypsiboas prasinus	6	AY549347		---	---	---	---	---	AY549400	---	---
Hypsiboas pulchellus	9	AY549352		AY844278	---	---	---	---	AY549405	---	---
Hypsiboas punctatus	5	AY549353		---	---	---	---	---	AY549406	---	---
Hypsiboas raniceps	12	AY843657		---	AY819210	AY819284	---	KF751489	AY843900	---	---
Hypsiboas riojanus	8	AY549356		AY844279	---	---	---	---	AY549409	---	---
Hypsiboas roraima	10	AY843660		AY844280	---	---	---	KF751490	AY843903	---	---
Hypsiboas rosenbergi	3	AY819438	AY819545	---	---	---	---	---	---	---	---
Hypsiboas rufitelus	9	AY843662		AY844282	---	---	FJ766740	---	AY843905	---	---
Hypsiboas semiguttatus	8	AY549358		AY844285	---	---	---	---	AY549411	---	---
Hypsiboas semilineatus	11	AY843778	AY843779	AY844286	---	---	---	KF751491	AY843909	---	---
Hypsiboas sibleszi	10	AY843667		AY844288	---	---	---	KF751492	AY843911	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28 S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Hypsiboas tetete	1	---	---	---	---	---	---	---	---	---	---
Myersiohyla inparquesi	6	AY843672		AY844291	---	---	---	---	---	---	---
Myersiohyla kanaima	9	AY843634		---	---	---	---	GQ365994	AY843868	---	---
Dendropsophus anataliasiasi	1	JX287452	---	---	---	---	---	---	---	---	---
Dendropsophus anceps	8	AY843597		AY844220	---	---	---	---	AY843818	---	---
Dendropsophus aperomeus	3	AY819450	AY819549	---	---	---	---	---	---	---	---
Dendropsophus berthalutzae	9	AY843607		AY844228	---	---	---	---	AY843831	---	---
Dendropsophus bifurcus	2	AY362975		---	---	---	---	---	---	---	---
Dendropsophus bipunctatus	7	AY843608		AY844229	---	---	---	---	AY843832	---	---
Dendropsophus branneri	1	---	---	---	---	---	---	---	AF549336	---	---
Dendropsophus brevifrons	8	AY843611		AY844232	---	---	---	---	AY843836	---	---
Dendropsophus carnifex	6	AY843616		AY844238	---	---	---	---	AY843842	---	---
Dendropsophus coffeus	1	---	JF790050	---	---	---	---	---	---	---	---
Dendropsophus ebraccatus	13	AY843624	FJ542198	AY844247	AY819202	AY819276	---	---	EU034061	---	---
Dendropsophus elegans	4	DQ380355	AF308103	---	---	---	---	---	AF308124	---	---
Dendropsophus elianeae	1	JX287401	---	---	---	---	---	---	---	---	---
Dendropsophus frosti	2	JQ088283		---	---	---	---	---	---	---	---
Dendropsophus gaucheri	2	JF973308	JF973298	---	---	---	---	---	---	---	---
Dendropsophus giesleri	7	AY843629		AY844251	---	---	---	---	AY843860	---	---
Dendropsophus jimi	1	JX287413	---	---	---	---	---	---	---	---	---
Dendropsophus juliani	1	---	JF790051	---	---	---	---	---	---	---	---
Dendropsophus koechlini	6	AY819369	AY819501	---	AY819204	AY819278	---	---	---	---	---
Dendropsophus labialis	11	AY843635		AY844257	JF422634	JF422645	EF653832	---	FJ204208	---	---
Dendropsophus leali	3	AY819451	JF790062	---	---	---	---	---	---	---	---
Dendropsophus leucophyllatus	4	DQ380360	AF308097	---	---	---	---	---	AF308122	---	---
Dendropsophus luddeckei	3	JF422590	JF422594	---	---	---	---	---	---	---	--
Dendropsophus manonegra	2	KF009942		---	---	---	---	---	---	---	---
Dendropsophus marmoratus	6	AY843640		---	---	---	---	---	AY843877	DQ284085	---

[^0]APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Dendropsophus melanargyreus	2	JF973313	JF790074	---	---	---	---	---	---	---	---
Dendropsophus meridensis	3	JF422585		---	---	---	---	---	---	---	---
Dendropsophus microcephalus	11	EF566945		AY844266	AY819206	AY819280	---	---	AY843880	---	---
Dendropsophus minusculus	3	DQ380362	EF376061	---	---	---	---	---	---	---	---
Dendropsophus minutus	9	AY549345		DQ283456	---	---	EF587819	---	AY549398	DQ284046	---
Dendropsophus miyatai	7	AY843647		---	---	---	---	---	AY843886	---	---
Dendropsophus nanus	14	AY549346		AY844271	AY819208	AY819282	---	GQ365985	AY549399	DQ284051	---
Dendropsophus parviceps	8	AY843652		AY844274	---	---	---	---	AY843892	---	---
Dendropsophus phlebodes	1	---	---	---	---	---	---	---	JX008024	---	---
Dendropsophus reichlei	1	---	JF790108	---	---	---	---	---	---	---	---
Dendropsophus rhodopeplus	5	AY843658		---	---	---	---	---	---	---	---
Dendropsophus riveroi	1	DQ380372	---	---	---	---	---	---	---	---	---
Dendropsophus robertmertensi	3	AY819452	AY819551	---	---	---	---	---	---	---	---
Dendropsophus rubicundulus	6	AY843661		AY844281	---	---	---	---	AY843904	---	---
Dendropsophus salli	2	AY362976		---	---	---	---	---	---	---	---
Dendropsophus sanborni	8	AY843663		AY844283	---	---	---	---	AY843906	---	---
Dendropsophus sarayacuensis	4	AY843664		---	---	---	---	---	---	---	---
Dendropsophus sartori	6	AY819453	AY819552	---	AY819322	AY819315	---	---	---	---	---
Dendropsophus schubarti	1	DQ380374	---	---	---	---	---	---	---	---	---
Dendropsophus seniculus	8	AY843666		AY844287	---	---	---	---	AY843910	---	---
Dendropsophus timbeba	1	DQ380348	---	---	---	---	---	---	---	---	---
Dendropsophus triangulum	7	AY326053		AY844298	---	---	---	---	AY843926	---	---
Dendropsophus tritaeniatus	1	---	JF790114	---	---	---	---	---	---	---	---
Dendropsophus walfordi	5	AY843683		---	---	---	---	---	AY843929	---	---
Xenohyla truncata	3	AY843775		---	---	---	---	---	AY844018	---	---
Anotheca spinosa	15	AY843566		AY844198	AY819195	AY819269	---	---	DQ830847	DQ284101	DQ830860
Bromeliohyla bromeliacia	12	AY843612		AY844233	DQ055760	DQ055734	---	---	AY843837	---	---
Charadrahyla nephila	13	AY843649		AY844272	DQ388732	DQ388741	---	---	AY843889	DQ284100	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Charadrahyla taeniopus	12	AY843679		AY844296	AY819326	AY819319	---	---	AY843924	---	---
Diaglena spatulata	12	DQ830828	DQ830815	---	DQ388739	DQ388748	---	---	DQ830849	---	DQ830857
Dryophytes andersonii	10	EF566956		---	DQ055756	DQ055730	---	---	AY831026	---	---
Dryophytes arenicolor	15	DQ347054	FJ882776	---	AY819197	AY819271	---	AY364190	AY831027	---	EF 107241
Dryophytes avivocus	10	EF566947		---	DQ055759	DQ055733	---	---	AY831024	---	---
Dryophytes chrysoscelis	6	EF566949		---	---	---	HCU66863	---	AY831012	---	---
Dryophytes cinereus	17	AY549327	DQ830810	AY844241	AY819201	AY819275	FJ226785	DQ306493	FJ226874	DQ284057	DQ830874
Dryophytes euphorbiaceus	11	EF566961		AY844248	DQ055763	DQ055736	---	---	AY843855	---	---
Dryophytes eximius	9	EF566957		AY844249	---	---	---	---	AY843856	---	---
Dryophytes femoralis	13	DQ055838	EF566964	AY844250	DQ055764	DQ055737	FJ226786	---	FJ226875	---	---
Dryophytes gratiosus	12	EF566966		AY844252	GQ374907	GQ374911	---	---	AY843862	---	---
Dryophytes immaculatus	14	GQ374900	GQ374904	---	GQ374908	GQ374912	---	---	---	---	---
Dryophytes japonicus	6	DQ055840	EF566952	AY844255	DQ055766	DQ055739	NC_010232	---	AB303949	---	---
Dryophytes plicatus	13	DQ055842	EF566962	---	DQ055771	DQ055744	---	---	---	---	---
Dryophytes squirellus	4	EF566965		AY844295	AY819213	AY819287	FJ226851	---	FJ226942	---	---
Dryophytes suweonensis	12	AF218709	JQ815328	---	---	---	JQ844538	---	KF564855	---	---
Dryophytes versicolor	6	EF566951	EF566950	---	DQ055778	DQ055749	EF525820	---	AY830973	---	---
Dryophytes walkeri	8	GQ374902	EF566963	---	GQ374910	GQ374914	---	---	---	---	---
Dryophytes wrightorum	13	AY819368	GU989079	---	AY819203	AY819277	---	---	---	---	---
Duellmanohyla rufioculis	11	AY843583		AY844212	DQ388725	DQ388740	---	---	AY549368	DQ284059	---
Duellmanohyla soralia	5	AY843584		---	AY819196	AY819270	---	---	AY843806	---	---
Duellmanohyla uranochroa	13	---	DQ388750	---	DQ388726	DQ394284	---	---	---	---	---
Ecnomiohyla miliaria	3	DQ055841	AY843777	AY844268	DQ055769	DQ055742	FJ766699	---	AY843882	DQ284115	---
Ecnomiohyla minera	1	DQ388690	---	---	DQ388731	---	---	---	---	---	---
Ecnomiohyla rabborum	5	--	KC014807	---	---	---	---	---	---	---	---
Exerodonta abdivita	13	DQ388685	DQ388751	---	DQ388727	---	---	---	---	---	---
Exerodonta chimalapa	12	AY843619		AY844240	DQ388728	DQ388742	---	---	AY843845	DQ284099	---
Exerodonta melanomma	11	AY843642		AY844265	DQ055768	DQ055741	---	---	AY843879	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28 S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Exerodonta perkinsi	5	AY843653		AY844275	DQ388733	---	---	---	AY843893	---	---
Exerodonta smaragdina	3	DQ388694	DQ388759	---	DQ388735	---	---	---	---	---	---
Exerodonta sumichrasti	11	AY819454	---	---	DQ055776	---	---	---	---	---	---
Exerodonta xera	12	AY843686		AY844300	DQ388736	DQ388745	---	---	AY843932	---	---
Hyla annectans	12	AY843600		---	DQ055757	DQ055731	JN700883	---	FJ226919	---	---
Hyla arborea	11	AY843601		AY844221	DQ055758	DQ055732	JN801021	---	FJ226865	---	---
Hyla chinensis	4	AY458593		---	DQ055761	---	NC_006403	---	AY458593	HM998949	HM998954
Hyla felixarabica	3	GQ916739	GQ916782	---	---	---	---	---	---	---	---
Hyla intermedia	15	---	---	---	---	---	FJ226788	---	FJ226880	---	---
Hyla meridionalis	4	EF566953	FJ882757	---	AY819205	AY819279	DQ996400	AY523687	FJ226925	---	AY523710
Hyla molleri	8	---	JN800771	---	---	---	JN800967	---	FJ226918	---	---
Hyla orientalis	4	GQ916752	GQ916809	---	---	---	FJ226769	---	FJ226916	JF499573	---
Hyla sarda	13	---	---	---	---	---	FJ226811	---	FJ226927	---	---
Hyla savignyi	1	EF566954		AY844284	DQ055774	DQ055747	JN801023	---	FJ226930	JF499593	---
Hyla simplex	8	---	---	---	DQ055775	---	---	---	---	---	---
Hyla tsinlingensis	1	GQ374901	GQ374905	---	GQ374909	GQ374913	JN700882	---	JX870435	---	---
Isthmohyla lancasteri	14	---	---	---	---	DQ394285	---	---	---	---	---
Isthmohyla pseudopuma	9	AY843656		AY844277	DQ055772	DQ055745	---	---	FJ226899	---	DQ830868
Isthmohyla rivularis	11	AY843659		---	DQ055773	DQ055746	---	---	AY843902	DQ284058	---
Isthmohyla tica	11	AY819440	DQ830818	---	DQ055777	DQ055748	---	---	---	---	DQ830870
Isthmohyla zeteki	8	EF566968		---	DQ055779	DQ055750	---	---	---	---	DQ830869
Megastomatohyla mixe	6	AY843646		AY844269	---	---	---	---	AY843885	---	---
Plectrohyla chrysopleura	11	AY819384	AY819516	---	AY819219	AY819293	---	---	---	---	---
Plectrohyla glandulosa	12	AY843730		AY844331	DQ388737	---	---	---	AY843976	---	---
Plectrohyla guatemalensis	8	AY843731		AY844332	DQ055780	DQ055751	---	---	AY843977	---	---
Plectrohyla matudai	12	AY843732		AY844333	---	---	---	---	AY843978	---	---
Ptychohyla dendrophasma	8	AY843623		AY844246	DQ055762	DQ055735	---	---	AY843852	---	---
Ptychohyla euthysanota	8	AY843744		AY844340	---	---	---	---	AY843990	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12 S	16S	28 S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Ptychohyla hypomykter	8	AY843745		---	DQ055782	DQ055753	---	---	AY843991	---	---
Ptychohyla leonhardschulzei	5	AY843746		AY844341	---	---	---	---	AY843992	---	---
Ptychohyla salvadorensis	12	---	AY819547	---	DQ055783	DQ055754	---	---	---	---	---
Ptychohyla spinipollex	11	AY843748		AY844343	AY819223	AY819297	---	---	AY843994	---	---
Ptychohyla zophodes	11	AY843749		AY844344	---	DQ388746	---	---	AY843995	---	---
Rheohyla miotympanum	3	AY843645		---	AY819207	AY819281	---	---	AY843884	---	---
Sarcohyla ameibothalame	8	DQ388686	DQ388752	---	---	---	---	---	---	---	---
Sarcohyla arborescandens	7	AY843602		AY844222	---	---	---	---	AY843823	---	---
Sarcohyla bistincta	7	AY843609		AY844230	---	---	---	---	AY843834	---	---
Sarcohyla calthula	12	AY843615		AY844237	---	---	---	---	AY843841	---	---
Sarcohyla cyclada	6	AY843622		AY844245	DQ388729	DQ388743	---	---	AY843851	---	---
Sarcohyla pentheter	2	EF566972		---	DQ055770	DQ055743	---	---	---	---	---
Sarcohyla siopela	12	---	---	---	DQ388734	---	---	---	---	---	---
Smilisca baudinii	14	EF566967		---	DQ388738	DQ388747	---	---	AY549419	---	DQ830862
Smilisca cyanosticta	14	AY843763		AY844350	AY819228	AY819302	---	---	AY844008	---	DQ830864
Smilisca fodiens	16	AY843743		AY844339	AY819222	AY819296	---	---	DQ830850	---	DQ830863
Smilisca phaeota	13	AY326040		AY844351	DQ055784	DQ055755	FJ766834	---	DQ830852	DQ284083	DQ830865
Smilisca puma	9	AY843765		---	DQ830823	DQ830829	---	---	DQ830853	---	DQ830866
Smilisca sila	9	DQ388700	DQ830822	---	DQ830824	DQ830830	FJ766836	---	DQ830854	---	---
Smilisca sordida	11	DQ388701	---	---	DQ830825	DQ830831	---	---	---	---	DQ830867
Tlalocohyla godmani	6	DQ388689	DQ830811	---	DQ388730	DQ388744	---	---	---	---	DQ830872
Tlalocohyla loquax	13	AY819431	DQ055822	---	DQ055767	DQ055740	---	---	---	---	---
Tlalocohyla picta	13	AY843654		AY844276	---	---	---	---	DQ830855	DQ284121	DQ830871
Tlalocohyla smithii	15	AY843668		---	AY819212	AY819286	---	---	DQ830856	---	DQ830873
Triprion petasatus	9	AY843774		AY844357	AY819231	AY819305	---	---	DQ830848	DQ284082	DQ830861
Aparasphenodon brunoi	9	AY843567		AY844199	---	---	---	---	AY843789	---	---
Argenteohyla siemersi	9	AY843570		AY844202	---	---	---	---	AY843792	DQ284064	---
Corythomantis greeningi	5	AY843578		AY844209	---	---	---	---	AY843800	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28 S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Dryaderces pearsoni	13	KF002006		---	---	---	KF001884	---	KF001949	---	---
Itapotihyla langsdorffii	4	AY843706		AY844311	AY819214	AY819288	KF001942	---	AY843951	---	---
Nyctimantis rugiceps	8	EU034032	AY843781	---	---	---	---	---	AY843945	---	---
Osteocephalus alboguttatus	9	DQ380347	JQ868516	---	---	---	---	---	EU034063	---	---
Osteocephalus buckleyi	11	DQ380378	KF002019	---	EU034038	---	JX875831	---	EU034064	---	---
Osteocephalus cabrerai	4	AY843705		AY844310	---	---	JX875827	---	AY843950	---	---
Osteocephalus cannatellai	1	KF002032	KF002031	---	---	---	JX875823	---	---	---	---
Osteocephalus carri	4	KF002033	---	---	---	---	---	---	---	---	---
Osteocephalus castaneicola	6	KF002034		---	---	---	KF001889	---	---	---	---
Osteocephalus deridens	4	KF002037	KF002036	---	---	---	JX875817	---	KF001959	---	---
Osteocephalus festae	6	JX847064	---	---	---	---	JX875803	---	---	---	---
Osteocephalus fuscifacies	6	KF002038		---	---	---	JX875818	---	KF001960	---	---
Osteocephalus helenae	2	KF002053	KF002040	---	---	---	KF001892	---	KF001961	---	---
Osteocephalus heyeri	5	KF002054		---	---	---	---	---	---	---	---
Osteocephalus leoniae	11	KF002056	KF002058	---	---	---	KF001893	---	KF001965	---	---
Osteocephalus leprieurii	5	AY843707		AY844312	---	---	KF001900	---	AY549414	---	---
Osteocephalus mimeticus	7	KF002079		---	---	---	KF001901	---	KF001969	---	---
Osteocephalus mutabor	8	DQ380379	KF002080	---	EU034039	---	JX875824	---	KF001972	---	---
Osteocephalus oophagus	9	AY843708		---	---	---	KF001902	---	AY843953	---	---
Osteocephalus planiceps	3	DQ380380	KF002086	---	EU034040	---	JX875819	---	---	---	---
Osteocephalus subtilis	16	KF002092		---	---	---	KF001906	---	---	---	---
Osteocephalus taurinus	9	AY326041		AY844313	AY819215	AY819289	JX564881	---	JX564881	DQ284075	---
Osteocephalus verruciger	6	DQ380381	KF002170	---	EU034041	---	JX875842	---	EU034066	---	---
Osteocephalus yasuni	9	KF002177	KF002171	---	---	---	JX875828	---	KF001996	---	---
Osteopilus crucialis	12	AY843710		AY844314	---	---	EU034052	---	AY843955	---	---
Osteopilus dominicensis	9	AY843711		AY844315	---	---	EU034053	---	EU034068	---	---
Osteopilus marianae	10	DQ380383	EU034086	---	EU034043	---	EU034054	---	HQ831741	---	---
Osteopilus ocellatus	9	DQ380382	EU034083	---	EU034042	---	EU034051	---	HQ831744	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Osteopilus pulchrilineatus	15	AY819436	---	---	EU034044	---	EU034055	---	EU034070	---	---
Osteopilus septentrionalis	12	AY843712		AY844316	AY819216	AY819290	KF001943	---	HQ831679	DQ284049	---
Osteopilus vastus	9	AY843713		AY844317	EU034046	---	EU034057	---	HQ831742	---	---
Osteopilus wilderi	10	DQ380385	EU034092	---	EU034047	---	EU034058	---	---	---	---
Phyllodytes luteolus	9	AY843721		AY844324	---	---	---	---	AY843966	---	---
Phytotriades auratus	3	DQ403726	DQ403730	---	AY819218	AY819292	---	---	EU034078	---	---
Tepuihyla aecii	4	JQ868533		---	---	---	---	---	---	---	---
Tepuihyla edelcae	6	AY843770		---	---	---	---	---	---	---	---
Tepuihyla exophthalma	6	KF002179	KF002178	---	---	---	KF001939	---	KF001998	---	---
Tepuihyla rodriguezi	4	KF002183		---	---	---	KF001941	---	KF002000	---	---
Tepuihyla warreni	10	KF002185		---	---	---	---	---	KF002001	---	---
Trachycephalus coriaceus	7	DQ380386	EF376068	---	EU034048	---	---	---	EU034076	---	---
Trachycephalus hadroceps	2	AY843717		AY844319	---	---	---	---	AY843962	---	---
Trachycephalus imitatrix	16	EU034036	---	---	---	---	---	---	---	---	---
Trachycephalus jordani	8	AY326042		AY844356	AY819230	AY819304	EU034060	---	EU034079	DQ284097	---
Trachycephalus mesophaeus	5	AY843718		AY844320	---	---	---	---	AY843963	---	---
Trachycephalus nigromaculatus	9	AY843772		---	---	---	---	---	AY844016	---	---
Trachycephalus resinifictrix	2	AY843719		AY844321	---	---	---	---	AY843964	---	---
Trachycephalus typhonius	17	JX847093	---	---	---	---	---	---	---	---	---
Trachycephalus venulosus	1	DQ347027	FJ882779	AY844322	AY819217	AY819291	---	GQ366030	EU034077	---	AY948824
Lysapsus bolivianus	2	---	JF789938	---	---	---	---	---	---	---	---
Lysapsus caraya	9	EF152999		---	---	---	---	---	---	---	---
Lysapsus laevis	6	EF152998		AY844305	---	---	---	---	AY843941	DQ284110	---
Lysapsus limellum	2	EF153002		---	---	---	---	---	AY843942	---	---
Pseudis bolbodactyla	2	EF153007		---	---	---	---	---	---	---	---
Pseudis cardosoi	2	EF152997		---	---	---	---	---	---	---	---
Pseudis fusca	9	EF153003		---	---	---	---	---	---	---	---
Pseudis minuta	12	EF152996		AY844336	---	---	---	GQ366028	JX456354	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28 S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Pseudis paradoxa	2	AY326032	EF153012	AY844337	AY819187	AY819264	---	---	AY549417	DQ284128	---
Pseudis tocantins	10	EF153004		---	---	---	---	---	---	---	---
Scarthyla goinorum	7	AY843752		---	AY819224	AY819298	---	---	AY843997	---	---
Julianus uruguayus	6	AY843681		AY844299	---	---	---	---	AY843927	---	---
Ololygon berthae	11	AY843754		AY844345	---	---	---	---	AY843999	---	---
Ololygon catharinae	2	AY843756		AY844346	AY819225	AY819299	---	---	AY844001	---	---
Ololygon faivovichi	1	---	JN100002	---	---	---	---	---	---	---	---
Ololygon obtriangulata	2	GQ896259	---	---	---	---	---	---	---	---	---
Ololygon peixotoi	2	---	JN100004	---	---	---	---	---	---	---	---
Ololygon perpusilla	7	---	JN099988	---	---	---	---	---	---	---	---
Scinax acuminatus	3	AY843753		---	---	---	---	---	AY843998	---	---
Scinax boesemani	6	EF217460	EF217498	---	---	---	---	---	---	---	---
Scinax boulengeri	2	AY843755		---	---	---	---	---	AY844000	---	---
Scinax chiquitanus	6	GQ896253	JF789945	---	---	---	---	---	---	---	---
Scinax crospedospilus	4	AY819391	AY819523	---	AY819226	AY819300	---	---	---	---	---
Scinax cruentommus	1	EF217465	EF217508	---	---	---	---	---	EF364252	---	---
Scinax duartei	7	GQ896255	---	---	---	---	---	---	---	---	---
Scinax elaeochrous	1	AY843757		---	---	---	---	---	AY844002	---	---
Scinax funereus	1	GQ896256	---	---	---	---	---	---	---	---	---
Scinax fuscomarginatus	9	---	JF789985	---	---	---	---	---	---	---	---
Scinax fuscovarius	7	AY843758		AY844347	---	---	JQ627315	---	AY844003	---	---
Scinax garbei	1	AY326033		DQ283457	---	---	---	---	---	DQ284047	---
Scinax hayii	1	GQ896257	---	---	---	---	---	---	---	---	---
Scinax ictericus	3	GQ896258	---	---	---	---	---	---	---	---	---
Scinax jolyi	7	EF376036	AF467261	---	---	---	---	---	---	---	---
Scinax nasicus	4	AY843759		AY844348	---	---	---	---	AY844004	---	---
Scinax nebulosus	1	EF217471	EU201096	---	---	---	---	---	AF549386	---	---
Scinax oreites	1	GQ896260	---	---	---	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28 S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Scinax pedromedinae	3	GQ896261	---	---	---	---	---	--	---	---	---
Scinax proboscideus	1	EF217468	EF217511	---	---	---	---	---	---	---	---
Scinax quinquefasciatus	3	GQ896262	---	---	---	---	---	---	---	---	---
Scinax rostratus	8	EF376039	EF376071	---	---	---	---	---	---	---	---
Scinax ruber	1	AY326034		---	---	---	---	---	EF364235	DQ284045	---
Scinax similis	7	GQ896263	---	---	---	---	---	---	---	---	---
Scinax squalirostris	9	AY843760		AY844349	---	---	---	---	---	---	---
Scinax staufferi	6	AY843761		---	---	---	--	GQ366029	AY844006	---	---
Scinax sugillatus	4	AY819392	AY819524	---	AY819227	AY819301	---	---	---	---	---
Scinax x-signatus	6	EF217437	EF217480	---	---	---	---	---	EF364246	---	---
Sphaenorhynchus dorisae	12	AY843766		---	---	---	---	---	AY844011	---	---
Sphaenorhynchus lacteus	1	AY819394	AY549367	AY844352	AY819229	AY819303	---	---	AY549420	DQ284048	---
Sphaenorhynchus orophilus	2	DQ380388	---	---	---	---	-	---	--	---	---
Litoria adelaidensis	2	FJ965862	FJ945365	---	---	---	---	---	---	---	---
Litoria amboinensis	2	FJ965863	FJ945366	---	---	---	---	---	---	---	--
Litoria angiana	2	FJ965865	FJ945368	---	---	---	---	---	---	---	---
Litoria arfakiana	2	AY326039		---	---	---	---	--	---	---	---
Litoria bicolor	2	DQ116835	DQ116859	---	---	---	---	---	---	---	---
Litoria burrowsi	2	FJ965870	FJ945373	---	---	---	---	---	---	---	-
Litoria congenita	2	FJ965872	FJ945375	---	---	---	---	---	---	---	---
Litoria coplandi	2	DQ116841	DQ116865	---	---	---	---	---	---	---	---
Litoria darlingtoni	2	FJ965875	FJ945378	---	---	---	---	---	---	---	---
Litoria dentata	2	FJ965877	FJ945379	---	---	---	---	---	---	---	---
Litoria dorsalis	2	FJ965878	FJ945380	---	---	---	---	---	---	---	---
Litoria electrica	3	FJ965880	FJ945382	---	---	---	---	---	---	---	---
Litoria ewingii	3	FJ965884	FJ945386	---	---	---	---	---	---	---	---
Litoria fallax	8	DQ116836	DQ116860	---	---	---	AF198298	---	---	---	---
Litoria freycineti	2	AY843693		---	---	---	---	GQ365989	AY843939	DQ284122	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28 S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Litoria havina	4	FJ965890	FJ945392	---	---	---	---	---	---	---	---
Litoria inermis	2	DQ283211		---	---	---	---	---	---	DQ284243	---
Litoria iris	2	FJ965893	FJ945395	---	---	---	---	---	---	---	---
Litoria jervisiensis	2	FJ965895	FJ945397	---	---	---	---	---	---	---	---
Litoria latopalmata	2	FJ965898	FJ945400	---	---	---	---	---	---	---	---
Litoria leucova	2	FJ965900	FJ945402	---	---	---	---	---	---	---	---
Litoria littlejohni	2	FJ965901	FJ945403	---	---	---	---	---	---	---	---
Litoria longirostris	2	FJ965902	FJ945404	---	---	--	---	---	---	---	---
Litoria majikthise	8	FJ965903	FJ945405	---	---	---	---	---	---	---	---
Litoria meiriana	2	AY843695		---	---	---	---	--	---	DQ284125	---
Litoria microbelos	2	DQ116831	DQ116855	---	---	---	---	---	---	---	---
Litoria micromembrana	2	FJ965904	AF136336	---	---	---	---	---	--	---	---
Litoria modica	2	FJ965906	FJ945407	---	---	---	---	---	---	---	---
Litoria multiplica	2	FJ965910	FJ945412	---	---	---	---	---	---	---	---
Litoria nasuta	2	DQ116838	DQ116862	---	---	---	---	---	---	---	---
Litoria nigrofrenata	2	FJ965912	FJ945414	---	---	---	---	---	---	---	---
Litoria nigropunctata	2	FJ965913	FJ945415	---	---	---	---	---	---	---	---
Litoria olongburensis	2	FJ965916	FJ945418	---	---	---	---	---	---	---	---
Litoria pallida	2	DQ116840	DQ116864	---	---	---	---	---	---	---	---
Litoria paraewingi	2	FJ965917	FJ945419	---	---	---	---	---	---	---	---
Litoria peronii	2	AY819408	DQ116857	---	---	---	---	---	---	---	---
Litoria personata	2	FJ965919	FJ945421	---	---	---	---	---	---	---	---
Litoria pronimia	2	FJ965922	FJ945424	---	---	---	---	---	---	---	---
Litoria prora	2	FJ965923	FJ945425	---	---	---	---	---	---	---	---
Litoria revelata	2	FJ965925	FJ945427	---	---	---	---	---	---	---	---
Litoria rothii	3	DQ116834	DQ116858	---	---	---	---	---	---	---	---
Litoria rubella	2	DQ116832	DQ116856	---	---	---	---	---	---	---	---
Litoria spartacus	2	FJ965930	FJ945432	---	---	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Litoria thesaurensis	2	GQ896273	AF136318	---	---	---	---	---	---	---	---
Litoria tornieri	2	DQ116837	DQ116861	---	---	---	---	---	---	---	---
Litoria tyleri	2	FJ965934	FJ945436	---	---	---	---	---	---	---	---
Litoria verreauxii	2	FJ965935	FJ945437	---	---	---	---	---	---	---	---
Litoria watjulumensis	2	DQ116842	DQ116866	---	---	---	---	---	---	---	---
Litoria wollastoni	3	FJ965937	FJ945439	---	---	---	---	---	---	---	---
Dryopsophus alboguttatus	2	DQ116846	DQ116870	---	---	---	---	---	---	---	---
Dryopsophus andiirrmalin	14	FJ965864	FJ945367	---	---	---	---	---	---	---	---
Dryopsophus aureus	8	DQ116845	DQ116869	---	AY819233	AY819307	EU043187	---	AY843937	DQ284098	---
Dryopsophus australis	2	AY843580		---	---	---	---	GQ365987	AY843802	DQ284124	---
Dryopsophus barringtonensis	2	FJ965867	FJ945370	---	---	---	---	---	---	---	---
Dryopsophus booroolongensis	3	FJ965868	FJ945371	---	---	---	---	---	---	---	---
Dryopsophus brevipes	16	AY819411	FJ945355	---	---	---	---	---	---	---	---
Dryopsophus caeruleus	2	AY326038	AF136316	---	AY819234	AY819308	AY883980	GQ365988	AY843938	---	AY948821
Dryopsophus cavernicolus	2	FJ965871	FJ945374	---	---	---	---	---	---	---	---
Dryopsophus chloris	1	DQ116851	DQ116874	---	---	---	---	---	---	---	---
Dryopsophus citropus	2	---	AF282611	---	---	---	---	---	---	---	---
Dryopsophus cryptotis	2	FJ965852	FJ945356	---	---	---	---	---	---	---	---
Dryopsophus cultripes	2	FJ965853	FJ945357	---	---	---	---	---	---	---	---
Dryopsophus cyclorhynchus	2	FJ965874	FJ945377	---	---	---	---	---	---	---	---
Dryopsophus dahlii	1	DQ116844	DQ116868	---	---	---	---	---	---	---	---
Dryopsophus daviesae	6	FJ965876	---	---	---	---	---	---	---	---	---
Dryopsophus dayi	3	FJ965939	DQ283220	---	---	---	AF304266	---	---	DQ284250	---
Dryopsophus eucnemis	2	FJ965882	AF136315	---	---	---	AF304232	---	---	---	---
Dryopsophus exophthalmus	7	FJ965885	AF136314	---	---	---	---	---	---	---	---
Dryopsophus genimaculatus	2	DQ283222		DQ283592	---	---	AF304231	---	---	DQ284252	---
Dryopsophus gilleni	2	DQ116849	DQ116872	---	---	---	---	---	---	---	---
Dryopsophus gracilentus	2	DQ116853	DQ116876	---	---	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	285	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Dryopsophus impurus	2	FJ965891	FJ945393	---	---	---	---	---	---	---	---
Dryopsophus jungguy	2	FJ965896	FJ945398	---	---	---	---	---	---	---	---
Dryopsophus kumae	5	FJ965897	FJ945399	---	---	---	---	---	---	---	---
Dryopsophus lesueurii	2	FJ965899	DQ283204	---	---	---	---	---	---	DQ284236	---
Dryopsophus longipes	2	FJ965854	DQ116867	---	---	---	---	---	---	---	---
Dryopsophus maculosus	8	FJ965855	FJ945359	---	---	---	---	---	---	---	---
Dryopsophus maini	9	FJ882737	FJ945360	---	---	---	---	EF107475	---	---	EF107252
Dryopsophus manya	2	FJ965857	FJ945361	---	AY819232	AY819306	---	---	EF125030	---	---
Dryopsophus moorei	6	FJ965909	FJ945411	---	---	---	---	---	---	---	---
Dryopsophus nannotis	2	FJ965911	DQ283218	---	---	---	AF304249	---	---	DQ284248	---
Dryopsophus novaehollandiae	2	FJ965858	FJ945362	---	---	---	---	---	---	---	---
Dryopsophus nudidigitus	2	FJ965914	FJ945416	---	---	---	---	---	---	---	---
Dryopsophus nyakalensis	2	FJ965915	FJ945417	---	---	---	---	---	---	---	---
Dryopsophus pearsonianus	2	FJ965918	FJ945420	---	---	---	---	---	---	---	---
Dryopsophus phyllochrous	1	FJ965920	FJ945422	---	---	---	---	---	---	---	---
Dryopsophus platycephalus	3	FJ965859	---	---	---	---	---	---	---	---	---
Dryopsophus raniformis	3	FJ965924	FJ945426	---	---	---	EU043205	---	---	---	---
Dryopsophus rheocolus	3	FJ965926	AF136327	---	---	---	AF304291	---	---	---	---
Dryopsophus serratus	2	GU323597	FJ945390	---	---	---	AF304215	---	---	---	---
Dryopsophus spenceri	2	FJ965932	FJ945434	---	---	---	---	---	---	---	--
Dryopsophus splendidus	2	DQ116850	DQ116873	---	---	---	---	---	---	---	---
Dryopsophus subglandulosus	2	FJ965933	FJ945435	---	---	---	---	---	---	---	---
Dryopsophus vagitus	2	FJ965860	FJ945363	---	---	---	---	---	---	---	---
Dryopsophus verrucosus	2	FJ965861	FJ945364	---	---	---	---	---	---	---	--
Dryopsophus wilcoxii	2	FJ965936	FJ945438	---	---	---	---	---	---	---	---
Dryopsophus xanthomerus	2	DQ116852	DQ116875	---	---	---	---	---	---	---	---
Nyctimystes brevipalmatus	2	FJ965869	FJ945372	---	---	---	---	---	---	---	---
Nyctimystes cheesmani	2	FJ965938	FJ945440	---	---	---	---	---	---	---	---
Nyctimystes dux	5	FJ965879	FJ945381	---	---	---	---	---	---	---	---

Nyctimystes dux
APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Nyctimystes foricula	2	FJ965941	FJ945443	---	AY819235	AY819309	---	---	---	---	---
Nyctimystes humeralis	9	FJ965942	FJ945444	---	---	---	---	---	---	---	---
Nyctimystes infrafrenatus	9	AY843694		AY844304	---	---	FJ952304	GQ365990	AY843940	---	---
Nyctimystes kubori	8	AY326037		---	---	---	JX564879	GQ365991	JX564879	---	---
Nyctimystes narinosus	2	AY843703		AY844308	---	---	---	GQ365992	AY843948	---	---
Nyctimystes papua	12	FJ965943	FJ945445	---	---	---	---	---	---	---	---
Nyctimystes pulcher	2	FJ965944	FJ945446	---	---	---	---	GQ365993	AY843946	DQ284126	AY948843
Nyctimystes semipalmatus	2	FJ965945	FJ945447	---	---	---	---	---	---	---	---
Nyctimystes zweifeli	10	FJ965949	FJ945451	---	---	---	---	---	---	---	---
Agalychnis annae	15	GQ366221		---	EF174320	---	---	GQ365977	GQ365913	---	---
Agalychnis callidryas	14	EF566944	GQ366223	---	EF174321	---	AB612053	AB612054	EF125028	DQ284401	AB612055
Agalychnis dacnicolor	7	AY326047		AY844318	AY819237	AY819311	---	GQ365995	EF125036	---	---
Agalychnis hulli	14	GQ366226		---	---	---	---	GQ365980	---	---	---
Agalychnis lemur	10	AY843725		---	AY819238	AY819312	FJ766721	GQ365981	EF125035	---	---
Agalychnis moreletii	8	GQ366227		---	EF174323	---	---	GQ365982	GQ365916	---	---
Agalychnis saltator	9	AY326044		---	---	---	---	GQ365983	GQ365917	---	---
Agalychnis spurrelli	1	AY819401	AY326043	---	AY819236	AY819310	---	---	EF125033	---	---
Agalychnis terranova	1	---	KC589394	---	---	---	---	---	---	---	---
Callimedusa atelopoides	7	AY819413	---	---	---	---	---	---	---	---	---
Callimedusa baltea	1	GQ366252		---	---	---	---	GQ366008	GQ365941	---	---
Callimedusa duellmani	2	AY819414	---	---	---	---	---	---	---	---	---
Callimedusa ecuatoriana	1	KF756940	---	---	---	---	---	---	---	---	---
Callimedusa perinesos	16	GQ896278	---	---	---	---	---	---	---	---	---
Callimedusa tomopterna	13	AY326045		AY844328	AY819239	AY819313	JX564887	GQ366024	JX564887	---	---
Cruziohyla calcarifer	4	AY843562		AY844196	EF174324	---	FJ766565	GQ365984	EF125034	---	---
Hylomantis asperus	11	GQ366222		---	---	---	---	GQ365978	---	---	---
Hylomantis granulosus	8	AY843687		AY844301	---	---	---	GQ365979	GQ365914	---	---
Phasmahyla cochranae	3	AY843715		---	---	---	---	GQ365996	AY843960	---	---
Phasmahyla cruzi	8	---	---	---	---	---	---	GQ365998	---	---	--

APPENDIX 1. (Continued)

Species	\# of genes	12S	16S	28S	cmyc2	cmyc3	COI	CXCR4	cytb	H3A	NCX1
Phasmahyla exilis	8	GQ366231		---	---	---	---	GQ365997	GQ365920	---	---
Phasmahyla guttata	7	AY843716		---	---	---	---	---	GQ365921	---	---
Phasmahyla jandaia	7	GQ366233		---	---	---	---	GQ365999	GQ365922	---	---
Phrynomedusa marginata	7	AY819417	GQ366234	---	---	---	---	---	GQ365923	---	---
Phyllomedusa bahiana	9	GQ366251		---	---	---	---	---	GQ365940	---	---
Phyllomedusa bicolor	10	AY843723		---	---	---	---	GQ366009	AY843968	---	---
Phyllomedusa boliviana	10	GQ896277	GQ366254	---	---	---	---	GQ366010	GQ365942	---	---
Phyllomedusa burmeisteri	5	GQ366257		---	---	---	---	GQ366011	GQ365945	---	---
Phyllomedusa camba	9	GQ366259		---	---	---	---	---	---	---	---
Phyllomedusa distincta	7	GQ366263		---	---	---	---	GQ366013	GQ365951	---	---
Phyllomedusa iheringii	7	GQ366264		---	---	--	---	---	GQ365952	---	---
Phyllomedusa neildi	9	GQ366270		---	---	---	---	GQ366015	GQ365958	---	---
Phyllomedusa sauvagii	9	GQ366283		---	---	---	---	GQ366018	GQ365971	---	---
Phyllomedusa tarsius	12	AY843726		AY844326	---	---	---	GQ366020	AY843971	---	---
Phyllomedusa tetraploidea	7	AY843727		AY844327	---	---	---	GQ366021	GQ365973	---	---
Phyllomedusa trinitatis	10	GQ896279	GQ366287	---	---	---	---	GQ366026	GQ365975	---	---
Phyllomedusa vaillantii	9	AY549363		AY844329	---	---	---	GQ366027	AY549416	---	---
Pithecopus ayeaye	8	GQ366245		---	---	---	---	GQ366003	GQ365935	---	---
Pithecopus azureus	3	GQ896276	GQ366247	---	---	---	---	GQ366005	GQ365936	---	---
Pithecopus centralis	12	GQ366261		---	---	---	---	---	GQ365948	---	---
Pithecopus hypochondrialis	7	FJ882741	AY948748	---	---	---	---	GQ366014	AY843969	GQ345210	AY948826
Pithecopus megacephalus	9	GQ366269		---	---	---	---	---	GQ365957	---	---
Pithecopus nordestinus	5	GQ366272		---	---	---	---	GQ366016	GQ365961	---	---
Pithecopus oreades	6	GQ366279		---	---	---	---	---	GQ365966	---	---
Pithecopus palliatus	9	AY326046		---	---	---	---	GQ366017	GQ365968	---	---
Pithecopus rohdei	14	GQ366240		---	---	---	---	GQ366000	GQ365929	---	---
Ceuthomantis smaragdinus	15	GQ345133		GQ345141	GQ345154	GQ345169	---	GQ345190	GQ345208	---	GQ345238
Dendrobates auratus	16	DQ347026	AY364565	AY844211	---	---	JX564862	AY364184	AY843803	DQ284072	AY948823
Haddadus binotatus	14	EF493361		DQ283493	GQ345147	GQ345165	JX298361	GQ345183	GQ345198	DQ284142	GQ345231
Rhinoderma darwinii	3	AY364357	AY364378	DQ283654	---	---	JX564891	AY364192	DQ502589	DQ284320	AY523733

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
\# of accessions in alignment	222	54	169	215	232	166	12	45	190
Acris blanchardi	---	---	EF988255	---	---	---	---	---	EF988317
Acris crepitans	FJ882759	FJ882759	GQ366031	EF107304	AY844533	AY844762	EF107403	---	AY844019
Acris gryllus	---	---	EF988267	AY844359	AY844534	AY844763	---	---	AY844020
Hyliola cadaverina	AY819497	---	AY819115	---	AY844722	---	---	---	AY844162
Hyliola hypochondriaca	---	---	---	---	---	---	---	---	---
Hyliola regilla	AY819508	---	AY819126	DQ679268	AY844725	---	---	---	AY844165
Hyliola sierra	---	---	---	---	---	---	---	---	---
Pseudacris brachyphona	---	KJ536245	---	---	---	---	---	---	---
Pseudacris brimleyi	---	---	---	---	---	---	---	---	---
Pseudacris clarkii	---	KJ536246	---	---	---	---	---	---	---
Pseudacris crucifer	AY819517	KJ536232	EF988269	---	AY844723	AY844927	---	---	AY844163
Pseudacris feriarum	---	KJ536237	---	---	---	---	---	---	---
Pseudacris fouquettei	---	KJ536249	---	---	---	---	---	---	---
Pseudacris illinoensis	---	KJ536235	---	---	---	---	---	---	---
Pseudacris kalmi	---	KJ536240	---	---	---	---	---	---	---
Pseudacris maculata	---	KJ536247	EF988270	---	---	---	---	---	EF988332
Pseudacris nigrita	AY819518	KJ536251	AY819136	---	---	---	---	---	---
Pseudacris ocularis	DQ055834	KJ536230	DQ055808	---	AY844724	---	---	---	AY844164
Pseudacris ornata	---	---	---	---	---	---	---	---	---
Pseudacris streckeri	---	KJ536234	---	---	---	---	---	---	---
Pseudacris triseriata	---	KJ536242	---	---	AY844726	AY844928	---	---	AY844166
Aplastodiscus albofrenatus	AY819539	---	---	---	---	---	---	---	---
Aplastodiscus albosignatus	---	---	---	AY844385	AY844570	AY844796	---	---	AY844042
Aplastodiscus arildae	---	---	---	AY844392	AY844578	AY844803	---	---	AY844049
Aplastodiscus callipygius	---	---	---	AY844402	AY844592	AY844813	---	---	AY844058
Aplastodiscus cavicola	---	---	---	AY844405	AY844594	AY844814	---	---	---
Aplastodiscus cochranae	---	---	---	AY844365	AY844542	AY844770	---	---	AY844024

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Aplastodiscus eugenioi	---	---	---	AY844456	AY844660	AY844875	---	---	---
Aplastodiscus leucopygius	KF794106	---	---	AY844425	AY844622	AY844840	---	---	AY844084
Aplastodiscus perviridis	KF794107	---	---	AY844366	AY844543	AY844771	---	---	AY844025
Aplastodiscus weygoldti	---	---	---	AY844467	AY844678	AY844887	---	---	---
Bokermannohyla astartea	AY819495	---	AY819113	---	AY844580	---	---	---	---
Bokermannohyla circumdata	KF794108	---	---	AY844409	AY844598	AY844817	---	---	AY844064
Bokermannohyla hylax	---	---	---	AY844419	AY844614	AY844832	---	---	AY844077
Bokermannohyla itapoty	KF794109	---	---	---	---	---	---	---	---
Bokermannohyla martinsi	---	---	---	---	AY844626	AY844844	---	---	AY844086
Bokermannohyla oxente	---	---	---	---	---	---	---	---	---
Colomascirtus armatus	KF794111	---	---	AY844393	AY844579	AY844804	---	---	AY844050
Colomascirtus charazani	KF794112	---	---	AY844406	AY844595	---	---	---	AY844061
Colomascirtus criptico	---	---	---	---	---	---	---	---	---
Colomascirtus larinopygion	---	---	---	---	---	---	---	---	---
Colomascirtus lindae	---	---	---	---	---	---	---	---	---
Colomascirtus pacha	---	---	---	---	---	---	---	---	---
Colomascirtus pantostictus	---	---	---	---	---	---	---	---	---
Colomascirtus princecharlesi	---	---	---	---	---	---	---	---	---
Colomascirtus psarolaimus	---	---	---	---	---	---	---	---	---
Colomascirtus ptychodactylus	---	---	---	---	---	---	---	---	---
Colomascirtus staufferorum	---	---	---	---	---	---	---	---	---
Colomascirtus tapichalaca	KF794114	---	---	---	AY844672	---	---	---	AY844121
Colomascirtus tigrinus	---	---	---	---	---	---	---	---	---
Hyloscirtus alytolylax	---	---	---	---	---	---	---	---	---
Hyloscirtus colymba	KF794113	EU034095	AY819157	AY844410	AY844599	AY844818	---	---	AY844065
Hyloscirtus lascinius	---	---	---	---	---	---	---	---	---
Hyloscirtus palmeri	AY819554	---	AY819158	AY844439	AY844636	AY844854	---	---	AY844095
Hyloscirtus phyllognathus	---	---	---	---	---	---	---	---	---
Hyloscirtus simmonsi	AY819555	---	AY819159	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Hypsiboas aguilari	KF794115	---	---	HM444764	HM444769	---	---	---	---
Hypsiboas albomarginatus	KF794116	FJ502641	---	AY844384	AY844568	AY844794	---	---	---
Hypsiboas albopunctatus	JN898847	JQ023191	---	---	JQ023434	AY844795	---	---	AY844041
Hypsiboas alfaroi	---	---	KF955307	KF955322	---	---	---	---	---
Hypsiboas almendarizae	---	---	---	KF955311	---	---	---	---	---
Hypsiboas balzani	---	---	---	AY844395	AY844582	AY844806	---	---	---
Hypsiboas benitezi	KF794117	---	---	AY844396	AY844583	---	---	---	---
Hypsiboas bischoffi	---	---	---	AY844398	AY844586	---	---	---	---
Hypsiboas boans	KF794118	---	AY819114	---	AY844588	AY844809	---	---	AY844055
Hypsiboas caingua	KF794119	---	---	---	AY844591	AY844812	---	---	AY844057
Hypsiboas caipora	KF794120	---	---	---	---	---	---	---	---
Hypsiboas calcaratus	---	---	---	KF955314	---	---	---	---	EF376134
Hypsiboas callipleura	KF794121	---	---	---	---	---	---	---	---
Hypsiboas cinerascens	AY819542	---	---	---	AY844610	AY844828	---	---	---
Hypsiboas cordobae	KF794122	---	---	AY844411	AY844600	AY844819	---	---	AY844066
Hypsiboas crepitans	---	---	---	AY844412	AY844601	---	---	---	AY844067
Hypsiboas curupi	---	---	---	---	---	---	---	---	---
Hypsiboas dentei	---	---	---	---	---	---	---	---	EF376124
Hypsiboas ericae	KF794123	---	---	AY844416	AY844605	---	---	---	AY844071
Hypsiboas faber	KF794124	FJ502710	---	---	AY844607	AY844825	---	---	---
Hypsiboas fasciatus	---	---	---	KF955309	AY844608	---	---	---	EF376135
Hypsiboas geographicus	AY819541	---	---	---	---	---	---	---	EF376122
Hypsiboas gladiator	---	---	---	---	---	---	---	---	---
Hypsiboas guentheri	KF794125	---	--	---	AY844612	AY844830	---	---	---
Hypsiboas heilprini	KF794126	---	EU034114	---	AY844613	AY844831	---	---	---
Hypsiboas joaquini	KF794127	---	---	AY844421	AY844616	AY844834	---	---	---
Hypsiboas lanciformis	AY819543	---	---	KF955325	AY844619	AY844837	---	---	AY844081
Hypsiboas latistriatus	KF794128	---	--	---	AY844668	---	---	---	---
Hypsiboas lemai	KF794129	---	---	AY844423	AY844620	AY844838	---	---	AY844082

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Hypsiboas leptolineatus	KF794130	---	---	AY844424	AY844621	AY844839	---	---	AY844083
Hypsiboas lundii	---	---	---	---	AY844623	AY844841	---	---	AY844085
Hypsiboas maculateralis	---	---	---	KF955317	---	---	---	---	---
Hypsiboas marginatus	KF794131	---	---	AY844426	AY844624	AY844842	---	---	---
Hypsiboas marianitae	KF794132	---	---	AY844427	AY844625	AY844843	---	---	---
Hypsiboas melanopleura	KF794133	---	---	---	HM444766	---	---	---	---
Hypsiboas microderma	KF794134	---	---	---	---	---	---	---	---
Hypsiboas multifasciatus	GQ366299	JQ023295	GQ366036	AY844436	AY844633	AY844851	---	---	AY844093
Hypsiboas nympha	KF794135	---	---	AY844457	AY844661	---	---	---	AY844112
Hypsiboas ornatissimus	---	---	---	---	---	---	---	---	EF376125
Hypsiboas palaestes	---	---	---	---	---	---	---	---	---
Hypsiboas pardalis	KF794136	---	---	---	AY844637	AY844855	---	---	AY844096
Hypsiboas pellucens	---	---	---	---	---	---	---	---	---
Hypsiboas picturatus	---	---	---	---	---	---	---	---	---
Hypsiboas polytaenius	KF794137	---	AY819124	AY844443	AY844641	AY844859	---	---	---
Hypsiboas prasinus	---	---	---	---	AY844642	AY844860	---	---	AY844100
Hypsiboas pulchellus	KF794138	---	---	AY844445	AY844644	AY844862	---	---	AY844102
Hypsiboas punctatus	KF794139	---	---	---	AY844645	---	---	---	---
Hypsiboas raniceps	JQ023173	JQ023296	AY819125	---	JQ023459	AY844863	---	---	AY844103
Hypsiboas riojanus	KF794141	---	---	AY844447	AY844648	AY844865	---	---	---
Hypsiboas roraima	KF794143	---	---	AY844448	AY844650	AY844866	---	---	AY844104
Hypsiboas rosenbergi	KF794142	---	---	---	---	---	---	---	---
Hypsiboas rufitelus	KF794144	---	---	---	AY844652	AY844867	---	---	AY844105
Hypsiboas semiguttatus	KF794145	---	--	AY844452	AY844655	AY844870	---	---	---
Hypsiboas semilineatus	KF794146	FJ502780	---	AY844453	AY844656	AY844871	---	---	AY844108
Hypsiboas sibleszi	KF794147	---	---	AY844455	AY844658	AY844873	---	---	AY844110
Hypsiboas tetete	---	---	---	KF955323	---	---	---	---	---
Myersiohyla inparquesi	---	---	---	---	AY844663	AY844876	---	---	AY844114
Myersiohyla kanaima	GQ366307	---	---	AY844422	AY844617	AY844835	---	---	AY844079

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Dendropsophus anataliasiasi	---	---	---	---	---	---	---	---	---
Dendropsophus anceps	---	---	---	AY844386	AY844571	AY844797	---	---	AY844043
Dendropsophus aperomeus	AY819549	---	---	---	---	---	---	---	---
Dendropsophus berthalutzae	---	JQ410480	---	AY844397	AY844584	AY844807	---	---	AY844052
Dendropsophus bifurcus	---	---	---	---	---	---	---	---	---
Dendropsophus bipunctatus	---	---	---	---	AY844585	AY844808	---	---	AY844053
Dendropsophus branneri	---	---	---	---	---	---	---	---	---
Dendropsophus brevifrons	---	---	---	AY844400	AY844589	AY844810	---	---	EF376128
Dendropsophus carnifex	---	---	---	AY844404	---	---	---	---	AY844060
Dendropsophus coffeus	---	---	---	---	---	---	---	---	---
Dendropsophus ebraccatus	FJ542150	EU034096	AY819117	AY844415	AY844604	AY844822	---	---	AY844070
Dendropsophus elegans	---	JQ410654	---	---	---	---	---	---	---
Dendropsophus elianeae	---	---	---	---	---	---	---	---	---
Dendropsophus frosti	---	---	---	---	---	---	---	---	---
Dendropsophus gaucheri	---	---	---	---	---	---	---	---	---
Dendropsophus giesleri	---	---	---	AY844417	---	AY844827	---	---	AY844075
Dendropsophus jimi	---	---	---	---	---	---	---	---	---
Dendropsophus juliani	---	---	---	---	---	---	---	---	---
Dendropsophus koechlini	AY819501	---	AY819119	---	---	---	---	---	---
Dendropsophus labialis	---	---	JF422463	---	AY844618	AY844836	---	---	AY844080
Dendropsophus leali	AY819550	---	---	---	---	---	---	---	---
Dendropsophus leucophyllatus	---	---	---	---	---	---	---	---	JN692124
Dendropsophus luddeckei	---	---	JF422610	---	---	---	---	---	---
Dendropsophus manonegra	---	---	--	---	---	---	---	---	---
Dendropsophus marmoratus	--	---	--	AY844428	DQ283782	---	---	---	---
Dendropsophus melanargyreus	---	---	---	---	---	---	---	---	---
Dendropsophus meridensis	---	---	JF422622	---	---	---	---	---	---
Dendropsophus microcephalus	AY819503	---	AY819121	AY844430	AY844628	AY844846	---	---	---
Dendropsophus minusculus	---	---	---	---	---	---	---	---	EF376131

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Dendropsophus minutus	---	---	---	AY844432	DQ283758	---	---	---	AY844089
Dendropsophus miyatai	---	---	---	AY844435	AY844632	AY844850	---	---	AY844092
Dendropsophus nanus	GQ366298	---	AY819123	AY844437	AY844634	AY844852	---	---	EF376132
Dendropsophus parviceps	---	---	---	AY844440	AY844638	AY844856	---	---	AY844097
Dendropsophus phlebodes	---	---	---	---	---	---	---	---	---
Dendropsophus reichlei	---	---	---	---	---	---	---	---	---
Dendropsophus rhodopeplus	---	---	---	AY844446	AY844647	AY844864	---	---	---
Dendropsophus riveroi	---	---	---	---	---	---	---	---	---
Dendropsophus robertmertensi	AY819551	---	---	---	---	---	---	---	---
Dendropsophus rubicundulus	---	---	---	AY844449	AY844651	---	---	---	---
Dendropsophus salli	---	---	---	---	---	---	---	---	---
Dendropsophus sanborni	---	---	---	AY844450	AY844653	AY844868	---	---	AY844106
Dendropsophus sarayacuensis	---	---	---	AY844451	---	AY844869	---	---	---
Dendropsophus sartori	AY819552	---	AY819156	---	---	---	---	---	---
Dendropsophus schubarti	---	---	---	---	---	---	---	---	---
Dendropsophus seniculus	---	---	---	AY844454	AY844657	AY844872	---	---	AY844109
Dendropsophus timbeba	---	---	---	---	---	---	--	---	---
Dendropsophus triangulum	---	---	---	AY844464	AY844673	---	---	---	AY844122
Dendropsophus tritaeniatus	---	---	---	---	---	---	---	---	---
Dendropsophus walfordi	---	---	---	---	AY844676	AY844886	---	---	---
Xenohyla truncata	---	---	---	---	---	---	---	---	---
Anotheca spinosa	AY819492	---	AY819110	DQ830928	DQ830913	AY844768	---	DQ830950	AY844022
Bromeliohyla bromeliacia	DQ055816	---	DQ055788	AY844401	AY844590	AY844811	---	---	AY844056
Charadrahyla nephila	DQ388756	---	DQ388712	AY844438	AY844635	AY844853	---	---	AY844094
Charadrahyla taeniopus	AY819556	---	DQ055803	AY844463	AY844671	AY844883	---	---	AY844120
Diaglena spatulata	DQ388763	---	DQ838733	DQ830930	DQ838736	DQ830963	---	DQ830946	---
Dryophytes andersonii	DQ055812	---	DQ055785	---	AY844572	AY844798	---	---	AY844044
Dryophytes arenicolor	FJ882776	FJ882776	AY819112	AY364220	AY364401	AY844802	EF107393	---	DQ347187
Dryophytes avivocus	DQ055815	---	---	GU989062	AY844581	AY844805	---	---	AY844051

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Dryophytes chrysoscelis	---	---	---	GU989054	GU944712	---	---	---	---
Dryophytes cinereus	KF794110	---	AY819116	AY323766	AY323749	AY844816	---	DQ830949	AY844063
Dryophytes euphorbiaceus	DQ055818	---	HM152406	---	AY844606	AY844823	---	---	AY844072
Dryophytes eximius	---	---	HM152416	GU989060	GU944718	AY844824	---	---	AY844073
Dryophytes femoralis	DQ055819	---	DQ055792	FJ227060	AY844609	AY844826	---	---	AY844074
Dryophytes gratiosus	DQ055820	---	DQ055793	AY844418	AY844611	AY844829	---	---	AY844076
Dryophytes immaculatus	GQ374904	---	GQ374916	---	---	---	---	---	---
Dryophytes japonicus	AB303949	AB303949	DQ055794	FJ227068	AY844615	AY844833	---	---	AY844078
Dryophytes plicatus	DQ055826	---	HM152405	---	---	---	---	---	---
Dryophytes squirellus	AY819510	---	AY819128	FJ227074	AY844670	AY844882	---	---	AY844119
Dryophytes suweonensis	---	---	---	---	---	---	---	---	---
Dryophytes versicolor	DQ055831	---	HM152404	AY844465	AY844675	AY844885	---	---	AY844124
Dryophytes walkeri	GQ374906	---	GQ374918	---	---	---	---	---	---
Dryophytes wrightorum	AY819500	---	HM152407	GU989051	GU944709	---	---	---	---
Duellmanohyla rufioculis	DQ388749	---	DQ388705	AY844377	AY844556	AY844782	---	---	AY844033
Duellmanohyla soralia	AY819493	---	AY819111	AY844378	AY844557	AY844783	---	---	AY844034
Duellmanohyla uranochroa	DQ388750	---	DQ388706	---	---	---	---	---	---
Ecnomiohyla miliaria	---	---	DQ055797	AY844431	AY844629	AY844847	---	---	AY844088
Ecnomiohyla minera	---	---	DQ388711	---	---	---	---	---	---
Ecnomiohyla rabborum	---	---	---	---	---	---	---	---	---
Exerodonta abdivita	DQ388751	---	DQ388707	---	---	---	---	---	---
Exerodonta chimalapa	DQ388753	---	DQ388708	AY844407	AY844596	AY844815	---	---	AY844062
Exerodonta melanomma	DQ055823	---	DQ055796	AY844429	AY844627	AY844845	---	---	AY844087
Exerodonta perkinsi	DQ388757	---	DQ388713	AY844441	AY844639	AY844857	---	---	AY844098
Exerodonta smaragdina	DQ388759	---	DQ388716	---	---	---	---	---	---
Exerodonta sumichrasti	---	---	DQ055802	---	---	---	---	---	---
Exerodonta xera	---	---	DQ388717	AY844468	AY844679	AY844888	---	---	AY844126
Hyla annectans	DQ055813	---	DQ055786	AY844388	AY844574	AY844800	---	---	AY844045
Hyla arborea	DQ055814	---	DQ055787	FJ227042	AY844575	---	---	---	AY844046

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Hyla chinensis	NC_006403	AY458593	DQ055789	HM998976	---	---	---	---	---
Hyla felixarabica	---	---	---	---	GQ916814	---	---	---	GQ916706
Hyla intermedia	---	---	---	FJ227093	---	---	---	---	---
Hyla meridionalis	AY523763	DQ902277	AY819120	AY571662	GQ916820	---	AY948860	---	GQ916722
Hyla molleri	---	---	---	FJ227101	---	---	---	---	---
Hyla orientalis	---	---	---	FJ227102	GQ916819	---	---	---	GQ916721
Hyla sarda	JN788041	---	---	FJ227092	---	---	---	---	---
Hyla savignyi	DQ055829	---	DQ055801	FJ227052	AY844654	---	---	---	AY844107
Hyla simplex	---	---	---	---	---	---	---	---	---
Hyla tsinlingensis	GQ374905	---	GQ374917	---	---	---	---	---	---
Isthmohyla lancasteri	---	---	---	---	---	---	---	---	---
Isthmohyla pseudopuma	DQ055827	---	DQ055799	FJ227075	DQ830922	DQ830971	---	DQ830960	AY844101
Isthmohyla rivularis	DQ055828	---	DQ055800	---	AY844649	---	---	---	---
Isthmohyla tica	DQ055830	---	DQ055804	DQ830938	DQ830923	DQ830972	---	DQ830953	---
Isthmohyla zeteki	DQ830875	---	DQ055806	DQ830939	DQ830924	DQ830973	---	DQ830959	---
Megastomatohyla mixe	---	---	---	AY844434	AY844631	AY844849	---	---	AY844091
Plectrohyla chrysopleura	AY819516	---	AY819134	---	---	---	---	---	---
Plectrohyla glandulosa	DQ388760	---	DQ388718	AY844500	AY844718	AY844923	---	---	AY844159
Plectrohyla guatemalensis	DQ055833	---	DQ055807	AY844501	AY844719	AY844924	---	---	AY844160
Plectrohyla matudai	---	---	---	AY844502	AY844720	AY844925	---	---	AY844161
Ptychohyla dendrophasma	AY819540	---	DQ055790	AY844414	AY844603	AY844821	---	---	AY844069
Ptychohyla euthysanota	--	---	---	AY844509	AY844731	AY844933	---	---	AY844170
Ptychohyla hypomykter	DQ055832	---	DQ055809	---	AY844732	---	---	---	---
Ptychohyla leonhardschultzei	---	---	---	AY844510	AY844733	AY844934	---	---	AY844171
Ptychohyla salvadorensis	AY819547	---	DQ055810	---	---	---	---	---	---
Ptychohyla spinipollex	AY819520	---	AY819138	AY844512	AY844735	AY844936	---	---	AY844173
Ptychohyla zophodes	DQ388761	---	DQ388719	AY844513	AY844736	AY844937	---	---	AY844174
Rheohyla miotympanum	AY819504	---	AY819122	AY844433	AY844630	AY844848	---	---	AY844090
Sarcohyla ameibothalame	DQ388752	---	---	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Sarcohyla arborescandens	---	---	---	AY844390	AY844576	AY844801	---	---	AY844047
Sarcohyla bistincta	---	---	---	AY844399	AY844587	---	---	---	AY844054
Sarcohyla calthula	---	---	---	AY844403	AY844593	---	---	---	AY844059
Sarcohyla cyclada	DQ388754	---	DQ388709	AY844413	AY844602	AY844820	---	---	AY844068
Sarcohyla pentheter	DQ055825	---	DQ055798	---	---	---	---	---	---
Sarcohyla siopela	---	---	DQ388715	---	---	---	---	---	---
Smilisca baudinii	DQ388762	---	DQ388720	DQ830932	DQ830917	AY844946	---	DQ830956	---
Smilisca cyanosticta	AY819525	---	AY819143	DQ830933	DQ830918	AY844947	---	DQ830957	AY844184
Smilisca fodiens	AY819519	---	AY819137	DQ830931	DQ830916	AY844932	---	DQ830944	AY844169
Smilisca phaeota	AY819548	---	DQ055811	DQ830934	AY844751	AY844948	---	DQ830947	AY844185
Smilisca puma	DQ830876	---	DQ388721	DQ830935	AY844752	AY844949	---	DQ830952	AY844186
Smilisca sila	---	---	DQ388722	---	DQ830921	DQ830969	---	---	---
Smilisca sordida	---	---	DQ388723	DQ830936	DQ388703	DQ830970	---	DQ830951	---
Tlalocohyla godmani	DQ388755	---	DQ388710	DQ830942	DQ830927	DQ830976	---	DQ830945	---
Tlalocohyla loquax	DQ055822	---	DQ055795	---	---	---	---	---	---
Tlalocohyla picta	DQ388758	---	DQ388714	DQ830940	DQ830925	AY844858	---	DQ830948	AY844099
Tlalocohyla smithii	AY819509	---	AY819127	DQ830941	DQ830926	AY844874	---	DQ830958	AY844111
Triprion petasatus	AY819528	---	AY819146	DQ830929	DQ830914	AY844955	---	DQ830943	AY844193
Aparasphenodon brunoi	KF002246	---	---	AY844364	AY844541	AY844769	---	---	AY844023
Argenteohyla siemersi	---	---	---	AY844367	AY844544	AY844772	---	---	AY844026
Corythomantis greeningi	KF002247	---	---	AY844374	AY844551	AY844779	---	---	AY844030
Dryaderces pearsoni	KF002189	---	---	---	---	---	---	---	---
Itapotihyla langsdorffii	AY819511	---	KF002003	AY844482	AY844697	AY844903	---	---	AY844137
Nyctimantis rugiceps	---	EU034098	---	---	---	---	---	---	---
Osteocephalus alboguttatus	KF002192	EU034097	JX875744	EU034132	---	---	---	EU034151	---
Osteocephalus buckleyi	EU034082	---	JX875730	EU034133	---	---	---	EU034152	---
Osteocephalus cabrerai	KF002199	---	JX875762	AY844481	AY844696	AY844902	---	---	AY844136
Osteocephalus cannatellai	---	---	JX875755	---	---	---	---	---	---
Osteocephalus carri	--	---	---	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Osteocephalus castaneicola	KF002200	---	---	---	---	---	---	---	---
Osteocephalus deridens	KF002202	---	JQ868484	---	---	---	---	---	---
Osteocephalus festae	HQ600613	---	JX875728	---	---	---	---	---	---
Osteocephalus fuscifacies	KF002203	---	JX875750	---	---	---	---	---	---
Osteocephalus helenae	KF002205	---	JX875739	---	---	---	---	---	---
Osteocephalus heyeri	---	---	---	---	---	---	---	---	---
Osteocephalus leoniae	KF002206	---	---	---	---	---	---	---	---
Osteocephalus leprieurii	KF002214	---	JQ868498	AY844483	AY844698	AY844904	---	---	AY844138
Osteocephalus mimeticus	KF002215	---	---	---	---	---	---	---	---
Osteocephalus mutabor	HQ600609	---	JX875756	---	---	---	---	---	---
Osteocephalus oophagus	KF002219	---	---	AY844484	AY844699	---	---	---	AY844139
Osteocephalus planiceps	KF002221	EU034099	EU034118	EU034134	---	---	---	EU034153	---
Osteocephalus subtilis	---	---	---	---	---	---	---	---	---
Osteocephalus taurinus	JX564881	JX564881	AY819130	EU034135	AY844700	AY844905	---	EU034154	AY844140
Osteocephalus verruciger	KF002241	EU034101	JX875743	---	---	---	---	EU034155	---
Osteocephalus yasuni	KF002242	---	JX875759	---	---	---	---	---	---
Osteopilus crucialis	EU034084	EU034103	EU034121	---	---	---	---	EU034157	---
Osteopilus dominicensis	EU034085	EU034104	EU034122	HQ831912	AY844701	---	---	EU034158	AY844141
Osteopilus marianae	EU034086	---	EU034123	EU034138	---	---	---	EU034159	---
Osteopilus ocellatus	EU034083	EU034102	EU034120	EU034136	---	---	---	EU034156	---
Osteopilus pulchrilineatus	EU034087	EU034105	EU034124	EU034139	---	---	---	EU034160	---
Osteopilus septentrionalis	EU034090	EU034108	KF002004	EU034142	---	AY844906	---	EU034161	AY844142
Osteopilus vastus	EU034091	---	EU034128	EU034144	---	AY844907	---	EU034162	AY844143
Osteopilus wilderi	EU034092	EU034110	EU034129	EU034145	---	---	---	EU034163	---
Phyllodytes luteolus	GQ366314	---	GQ366043	AY844494	AY844708	AY844913	---	---	AY844150
Phytotriades auratus	AY819515	---	AY819133	EU034148	---	---	---	EU034166	---
Tepuihyla aecii	---	---	JQ868478	---	---	---	---	---	---
Tepuihyla edelcae	---	---	JQ868475	AY844530	---	---	---	---	---
Tepuihyla exophthalma	KF002244	---	JQ868483	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Tepuihyla rodriguezi	JQ742387	---	JQ868474	---	---	---	---	---	---
Tepuihyla warreni	JQ742403	---	---	---	---	---	---	---	---
Trachycephalus coriaceus	EU034093	EU034111	EU034130	EU034146	---	---	---	EU034164	EF376139
Trachycephalus hadroceps	---	---	---	AY844490	AY844704	---	---	---	AY844146
Trachycephalus imitatrix	---	EU034112	---	---	---	---	---	---	---
Trachycephalus jordani	KF002248	EU034113	JX875777	EU034150	AY844758	AY844953	---	EU034167	AY844190
Trachycephalus mesophaeus	---	---	---	AY844491	AY844705	AY844910	---	---	AY844147
Trachycephalus nigromaculatus	---	---	---	---	AY844759	---	---	---	AY844191
Trachycephalus resinifictrix	---	---	JQ868481	AY844492	AY844706	AY844911	---	---	AY844148
Trachycephalus typhonius	---	---	JX875780	---	---	---	---	---	---
Trachycephalus venulosus	GQ366341	FJ882779	GQ366072	EU034147	AY364396	AY844912	AY948880	EU034165	DQ347161
Lysapsus bolivianus	---	---	---	---	---	---	---	---	---
Lysapsus caraya	---	---	---	---	---	---	---	---	---
Lysapsus laevis	---	---	---	AY844476	AY844689	AY844896	---	---	AY844133
Lysapsus limellum	---	---	---	AY844477	AY844690	AY844897	---	---	---
Pseudis bolbodactyla	---	---	---	---	---	---	---	---	---
Pseudis cardosoi	---	---	---	---	---	---	---	---	---
Pseudis fusca	---	---	---	---	---	---	---	---	---
Pseudis minuta	GQ366339	---	GQ366070	AY844505	---	AY844929	---	---	---
Pseudis paradoxa	AY819483	---	AY819102	AY323773	AY323748	---	---	---	AY844167
Pseudis tocantins	---	---	---	--	---	---	---	---	---
Scarthyla goinorum	AY819521	---	AY819139	AY844514	AY844738	AY844938	---	---	---
Julianus uruguayus	---	---	---	---	AY844674	AY844884	---	---	AY844123
Ololygon berthae	---	---	---	---	AY844740	AY844940	---	---	---
Ololygon catharinae	AY819522	---	AY819140	AY844517	AY844742	AY844941	---	---	---
Ololygon faivovichi	JN100003	---	---	---	---	---	---	---	---
Ololygon obtriangulata	---	---	---	---	---	---	---	---	---
Ololygon peixotoi	JN100004	---	---	---	---	---	---	---	---
Ololygon perpusilla	JN099994	---	---	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Scinax acuminatus	---	---	---	AY844515	AY844739	AY844939	---	---	AY844176
Scinax boesemani	---	---	---	---	---	---	---	---	JN692123
Scinax boulengeri	---	---	---	AY844516	AY844741	---	---	---	AY844177
Scinax chiquitanus	---	---	---	---	---	---	---	---	---
Scinax crospedospilus	AY819523	---	AY819141	---	---	---	---	---	---
Scinax cruentommus	---	---	---	---	---	---	---	---	EF376149
Scinax duartei	---	---	---	---	---	---	---	---	---
Scinax elaeochrous	---	---	---	AY844518	AY844743	AY844942	---	---	AY844178
Scinax funereus	---	---	---	---	---	---	---	---	---
Scinax fuscomaginatus	---	---	---	---	---	---	---	---	---
Scinax fuscovarius	---	---	---	AY844519	AY844744	AY844943	---	---	AY844179
Scinax garbei	---	---	---	---	DQ283759	DQ282650	---	---	DQ282898
Scinax hayii	---	---	---	---	---	---	---	---	---
Scinax ictericus	---	---	---	---	---	---	---	---	---
Scinax jolyi	---	---	---	---	---	---	---	---	EF376141
Scinax nasicus	---	---	---	AY844520	AY844745	---	---	---	AY844180
Scinax nebulosus	---	---	---	---	---	---	---	---	EF376144
Scinax oreites	---	---	---	---	---	---	---	---	--
Scinax pedromedinae	---	---	---	---	---	---	---	---	---
Scinax proboscideus	---	---	---	---	---	---	---	---	EF376143
Scinax quinquefasciatus	---	---	---	---	---	---	---	---	---
Scinax rostratus	---	---	---	---	---	---	---	---	EF376145
Scinax ruber	---	---	---	AY844521	AY844746	AY844944	---	---	JN692122
Scinax similis	---	---	---	---	---	---	---	---	---
Scinax squalirostris	---	---	---	AY844522	AY844747	AY844945	---	---	AY844182
Scinax staufferi	GQ366340	---	GQ366071	AY844523	AY844748	---	---	---	AY844183
Scinax sugillatus	AY819524	---	AY819142	---	---	---	---	---	---
Scinax x-signatus	---	---	---	---	---	---	---	---	EF364144
Sphaenorhynchus dorisae	---	---	---	AY844526	AY844753	---	---	---	AY844187

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Sphaenorhynchus lacteus	AY819526	---	AY819144	AY844527	AY844754	---	---	---	AY844188
Sphaenorhynchus orophilus	---	---	---	---	---	---	---	---	---
Litoria adelaidensis	---	---	---	---	---	---	---	---	---
Litoria amboinensis	---	---	---	---	---	---	---	---	---
Litoria angiana	---	---	---	---	---	---	---	---	---
Litoria arfakiana	---	---	---	---	---	---	---	---	---
Litoria bicolor	---	---	---	---	---	---	---	---	---
Litoria burrowsi	---	---	---	---	---	---	---	---	---
Litoria congenita	---	---	---	---	---	---	---	---	---
Litoria coplandi	---	---	---	---	---	---	---	---	---
Litoria darlingtoni	---	---	---	---	---	---	---	---	---
Litoria dentata	---	---	---	---	---	---	---	---	---
Litoria dorsalis	---	---	---	---	---	---	---	---	---
Litoria electrica	---	---	---	---	---	---	---	---	---
Litoria ewingii	---	---	---	EF551562	---	---	---	---	---
Litoria fallax	---	---	---	---	---	---	---	---	---
Litoria freycineti	---	---	---	AY844473	AY844686	AY844894	---	---	---
Litoria havina	---	---	---	---	---	---	---	---	---
Litoria inermis	---	---	---	---	DQ283892	---	---	---	---
Litoria iris	---	---	---	---	---	---	---	---	---
Litoria jervisiensis	---	---	---	---	---	---	---	---	---
Litoria latopalmata	---	---	---	---	---	---	---	---	---
Litoria leucova	---	---	---	---	---	---	---	---	---
Litoria littlejohni	---	---	---	---	---	---	---	---	---
Litoria longirostris	---	---	---	---	---	---	---	---	---
Litoria majikthise	---	---	---	---	---	---	---	---	---
Litoria meiriana	GQ366304	---	---	AY844475	AY844688	AY844895	---	---	AY844132
Litoria microbelos	---	---	---	---	---	---	---	---	---
Litoria micromembrana	---	---	---	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Litoria modica	---	---	---	---	---	---	---	---	---
Litoria multiplica	---	---	---	---	---	---	---	---	---
Litoria nasuta	---	---	---	---	---	---	---	---	---
Litoria nigrofrenata	---	---	---	---	---	---	---	---	---
Litoria nigropunctata	---	---	---	---	---	---	---	---	---
Litoria olongburensis	---	---	---	---	---	---	---	---	---
Litoria pallida	---	---	---	---	---	---	---	---	---
Litoria paraewingi	---	---	---	---	---	---	---	---	---
Litoria peronii	---	---	---	---	---	---	---	---	---
Litoria personata	---	---	---	---	---	---	---	---	---
Litoria pronimia	---	---	---	---	--	---	---	---	---
Litoria prora	---	---	---	---	---	---	---	---	---
Litoria revelata	---	---	---	---	---	---	---	---	---
Litoria rothii	---	---	---	---	---	---	---	---	---
Litoria rubella	AY819536	---	---	---	--	---	---	---	---
Litoria spartacus	---	---	---	---	---	---	---	---	---
Litoria thesaurensis	---	---	---	---	---	---	---	---	---
Litoria tornieri	---	---	---	---	---	---	---	---	---
Litoria tyleri	---	---	---	---	---	---	---	---	---
Litoria verreauxii	---	---	---	---	---	---	---	---	---
Litoria watjulumensis	---	---	---	---	---	---	---	---	---
Litoria wollastoni	---	---	---	---	---	---	---	---	---
Dryopsophus alboguttatus	EF080969	---	---	---	---	---	---	---	---
Dryopsophus andiirrmalin	---	---	---	---	---	---	---	---	---
Dryopsophus aureus	AY819530	---	GQ366037	EF174309	AY844684	AY844892	---	EF179205	AY844130
Dryopsophus australis	GQ366300	---	---	AY844376	AY844553	---	---	---	---
Dryopsophus barringtonensis	---	---	---	---	---	---	---	---	---
Dryopsophus booroolongensis	---	---	---	---	---	---	---	---	---
Dryopsophus brevipes	AY819537	---	---	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Dryopsophus caeruleus	GQ366301	---	AY819149	AY323767	AY323751	AY844893	AY948877	EF179206	AY844131
Dryopsophus cavernicolus	---	---	---	---	---	---	---	---	---
Dryopsophus chloris	---	---	---	---	---	---	---	---	---
Dryopsophus citropus	---	---	---	---	---	---	---	---	---
Dryopsophus cryptotis	---	---	---	---	---	---	---	---	---
Dryopsophus cultripes	---	---	---	---	---	---	---	---	---
Dryopsophus cyclorhynchus	---	---	---	---	---	---	---	---	---
Dryopsophus dahlii	---	---	---	---	---	---	--	---	---
Dryopsophus daviesae	---	---	---	---	---	--	---	---	---
Dryopsophus dayi	---	---	---	---	DQ283897	DQ282757	---	---	---
Dryopsophus eucnemis	---	---	---	---	---	---	---	---	---
Dryopsophus exophthalmus	---	--	---	---	---	---	---	---	---
Dryopsophus genimaculatus	---	---	---	---	DQ283899	DQ282759	---	---	---
Dryopsophus gilleni	---	---	---	---	---	---	---	---	---
Dryopsophus gracilentus	---	---	---	---	---	---	---	---	---
Dryopsophus impurus	---	---	---	---	---	---	---	---	---
Dryopsophus jungguy	---	---	---	---	---	---	---	---	---
Dryopsophus kumae	---	---	---	---	---	---	---	---	---
Dryopsophus lesueurii	---	---	---	---	DQ283887	DQ282747	---	---	---
Dryopsophus longipes	---	---	---	---	---	---	---	---	---
Dryopsophus maculosus	---	---	---	---	---	---	---	---	---
Dryopsophus maini	FJ882738	FJ882738	---	EF107311	---	---	EF107411	---	---
Dryopsophus manya	AY819529	---	AY819147	EF174308	---	---	---	EF179204	---
Dryopsophus moorei	---	---	---	---	---	---	---	---	---
Dryopsophus nannotis	---	---	---	---	DQ283896	DQ282756	---	---	---
Dryopsophus novaehollandiae	---	---	---	---	---	---	---	---	--
Dryopsophus nudidigitus	---	---	---	---	---	---	---	---	---
Dryopsophus nyakalensis	---	---	---	---	---	---	---	---	---
Dryopsophus pearsonianus	---	---	---	---	---	---	---	---	---

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Dryopsophus phyllochrous	---	---	---	---	---	---	---	---	---
Dryopsophus platycephalus	---	---	---	---	---	---	---	---	---
Dryopsophus raniformis	---	---	---	---	---	---	---	---	---
Dryopsophus rheocolus	---	---	---	---	---	---	---	---	---
Dryopsophus serratus	---	---	---	---	---	---	---	---	---
Dryopsophus spenceri	---	---	---	---	---	---	---	---	---
Dryopsophus splendidus	---	---	---	---	---	---	---	---	---
Dryopsophus subglandulosus	---	---	---	---	---	---	---	---	---
Dryopsophus vagitus	---	---	---	---	---	---	---	---	---
Dryopsophus verrucosus	---	---	---	---	---	---	---	---	---
Dryopsophus wilcoxii	---	---	---	---	---	---	---	---	---
Dryopsophus xanthomerus	---	---	---	---	---	---	---	---	---
Nyctimystes brevipalmatus	---	---	---	---	---	---	---	---	---
Nyctimystes cheesmani	---	---	---	---	---	---	---	---	---
Nyctimystes dux	---	---	---	---	---	---	---	---	---
Nyctimystes foricula	---	---	AY819150	---	---	---	---	---	--
Nyctimystes humeralis	---	---	---	---	---	---	---	---	---
Nyctimystes infrafrenatus	GQ366302	---	---	AY844474	AY844687	---	---	---	---
Nyctimystes kubori	GQ366303	JX564879	---	AY844479	AY844693	---	---	---	---
Nyctimystes narinosus	GQ366305	---	---	---	AY844694	---	---	---	AY844135
Nyctimystes papua	---	---	---	---	---	---	---	---	---
Nyctimystes pulcher	GQ366306	FJ882740	---	AY948941	AY844692	---	AY948907	---	AY844134
Nyctimystes semipalmatus	---	---	---	---	---	---	---	---	---
Nyctimystes zweifeli	---	---	---	---	---	---	---	---	---
Agalychnis annae	GQ366291	---	EF158394	EF174311	---	---	---	EF179207	GQ366198
Agalychnis callidryas	FJ489260	---	EF158395	AY323765	AY323750	DQ282880	---	EF179208	DQ283018
Agalychnis dacnicolor	GQ366308	---	AY819152	AY844488	AY844702	AY844908	---	EF179216	AY844144
Agalychnis hulli	GQ366293	---	GQ366033	GQ366073	GQ366101	---	---	---	---
Agalychnis lemur	GQ366294	---	GQ366034	EF174318	AY844712	AY844917	---	EF179214	AY844154

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Agalychnis moreletii	GQ366295	---	EF158397	EF174314	GQ366102	---	---	EF179210	---
Agalychnis saltator	GQ366296	---	EF158398	EF174315	---	---	---	EF179211	---
Agalychnis spurrelli	EF396332	---	AY819151	EF174313	---	---	---	EF179212	---
Agalychnis terranova	---	---	---	---	---	---	---	---	---
Callimedusa atelopoides	---	---	---	---	---	---	---	---	---
Callimedusa baltea	GQ366321	---	---	GQ366085	GQ366127	---	---	---	---
Callimedusa duellmani	---	---	---	---	---	---	---	---	---
Callimedusa ecuatoriana	KF756942	---	---	---	---	---	---	---	---
Callimedusa perinesos	---	---	---	---	---	---	---	---	---
Callimedusa tomopterna	GQ366337	JX564887	GQ366068	EF174319	GQ366157	AY844920	---	EF179215	GQ366219
Cruziohyla calcarifer	GQ366297	---	GQ366035	EF174317	GQ366103	---	---	EF179213	DQ282950
Hylomantis asperus	---	---	---	---	GQ366098	---	---	---	---
Hylomantis granulosus	GQ366292	---	GQ366032	AY844469	GQ366099	AY844889	---	---	AY844127
Phasmahyla cochranae	GQ366309	---	GQ366038	GQ366076	GQ366105	---	---	---	---
Phasmahyla cruzi	GQ366311	---	GQ366041	---	---	---	---	---	---
Phasmahyla exilis	GQ366310	---	GQ366039	GQ366077	GQ366106	---	---	---	---
Phasmahyla guttata	---	---	GQ366040	AY844489	GQ366107	AY844909	---	---	AY844145
Phasmahyla jandaia	GQ366312	---	GQ366042	---	GQ366108	---	---	---	---
Phrynomedusa marginata	GQ366313	---	---	GQ366078	GQ366109	---	---	---	GQ366199
Phyllomedusa bahiana	---	HQ262457	GQ366050	---	GQ366126	---	---	---	GQ366205
Phyllomedusa bicolor	GQ366322	---	---	AY844495	AY844710	AY844915	---	---	AY844152
Phyllomedusa boliviana	GQ366323	HQ262456	GQ366051	GQ366086	GQ366128	---	---	---	GQ366206
Phyllomedusa burmeisteri	GQ366324	HQ262466	GQ366052	GQ366087	GQ366130	---	---	---	GQ366208
Phyllomedusa camba	---	---	GQ366054	GQ366088	GQ366134	---	---	---	---
Phyllomedusa distincta	GQ366326	HQ262477	GQ366055	---	GQ366135	---	---	---	GQ366210
Phyllomedusa iheringii	GQ366328	HQ262488	GQ366057	---	GQ366136	---	---	---	---
Phyllomedusa neildi	GQ366329	---	---	---	GQ366142	---	---	---	GQ366214
Phyllomedusa sauvagii	GQ366332	---	GQ366065	GQ366094	GQ366152	---	---	---	GQ366216
Phyllomedusa tarsius	---	---	---	GQ366095	AY844713	AY844918	---	---	AY844155

APPENDIX 1. (Continued)

Species	ND1	ND2	POMC	RAG1	Rho	SIA	SLC8A3	TNS3	TYR
Phyllomedusa tetraploidea	GQ366334	HQ262487	GQ366066	GQ366096	GQ366156	AY844919	---	---	AY844156
Phyllomedusa trinitatis	---	---	---	GQ366097	GQ366158	---	---	---	GQ366220
Phyllomedusa vaillantii	GQ366338	---	---	AY844498	AY844716	AY844921	---	---	AY844158
Pithecopus ayeaye	GQ366318	---	GQ366046	GQ366083	GQ366119	---	---	---	GQ366202
Pithecopus azureus	GQ366320	---	---	GQ366084	GQ366122	---	---	---	GQ366204
Pithecopus centralis	---	---	---	---	---	---	---	---	---
Pithecopus hypochondrialis	GQ366327	---	---	AY948929	AY844711	AY844916	AY948882	---	AY844153
Pithecopus megacephalus	---	---	GQ366058	GQ366090	GQ366139	---	---	---	GQ366213
Pithecopus nordestinus	GQ366330	---	GQ366059	GQ366091	GQ366143	---	---	---	GQ366215
Pithecopus oreades	---	---	GQ366062	---	GQ366146	---	---	---	---
Pithecopus palliatus	GQ366331	---	---	GQ366092	---	---	---	---	---
Pithecopus rohdei	GQ366315	---	GQ366044	GQ366082	GQ366111	---	---	---	GQ366200
Ceuthomantis smaragdinus	GQ345251	---	GQ345267	GQ345287	GQ345305	GQ345317	GQ345338	---	---
Dendrobates auratus	JX564862	HQ290980	---	EU325909	AY364395	AY844781	AY948879	---	DQ347160
Haddadus binotatus	---	---	GQ345259	GQ345278	DQ283807	GQ345309	GQ345329	---	DQ282918
Rhinoderma darwinii	FJ882755	JX564891	---	AY364222	AY364403	DQ282813	AY948895	---	---

[^0]: .continued on the next page

