
Performance of Relaxed-Clock Methods in Estimating
Evolutionary Divergence Times and Their Credibility Intervals

Fabia U. Battistuzzi,1 Alan Filipski,1 S. Blair Hedges,2 and Sudhir Kumar*,1,3

1Center for Evolutionary Functional Genomics, The Biodesign Institute, Arizona State University
2Department of Biology, Pennsylvania State University
3School of Life Sciences, Arizona State University

*Corresponding author: E-mail: s.kumar@asu.edu.

Associate editor: Naoko Takezaki

Abstract

The rapid expansion of sequence data and the development of statistical approaches that embrace varying evolutionary
rates among lineages have encouraged many more investigators to use DNA and protein data to time species divergences.
Here, we report results from a systematic evaluation, by means of computer simulation, of the performance of two
frequently used relaxed-clock methods for estimating these times and their credibility intervals (CrIs). These relaxed-clock
methods allow rates to vary in a phylogeny randomly over lineages (e.g., BEAST software) and in autocorrelated fashion
(e.g., MultiDivTime software). We applied these methods for analyzing sequence data sets simulated using naturally
derived parameters (evolutionary rates, sequence lengths, and base substitution patterns) and assuming that clock
calibrations are known without error. We find that the estimated times are, on average, close to the true times as long as
the assumed model of lineage rate changes matches the actual model. The 95% CrIs also contain the true time for �95% of
the simulated data sets. However, the use of incorrect lineage rate model reduces this frequency to 83%, indicating that the
relaxed-clock methods are not robust to the violation of underlying lineage rate model. Because these rate models are
rarely known a priori and are difficult to detect empirically, we suggest building composite CrIs using CrIs produced from
MultiDivTime and BEAST analysis. These composite CrIs are found to contain the true time for �97% data sets. Our
analyses also verify the usefulness of the common practice of interpreting the congruence of times inferred from different
methods as a reflection of the accuracy of time estimates. Overall, our results show that simple strategies can be used to
enhance our ability to estimate times and their CrIs when using the relaxed-clock methods.
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Introduction
Molecular clock methods are becoming indispensable for
establishing the chronological dimension of the tree of life
(Hedges and Kumar 2009). The exponential increase in the
amount of sequence data available is reflected in the num-
ber of studies applying molecular clocks to larger data sets
and increasing numbers of taxonomic groups (Benton and
Ayala 2003; Kumar 2005; Donoghue and Benton 2007;
Hedges and Kumar 2009). Molecular clocks are being ap-
plied not only to date species divergences where few fossils
or geochemical data (e.g., biomarkers) exist but also for dat-
ing more recent events in evolution where a far larger
amount of paleontological evidence exists to establish
a temporal history of species (Hedges and Kumar 2003;
Brocks and Pearson 2005). These molecular clock time
estimates have been useful in highlighting links between
species divergences and major events in Earth’s evolution,
patterns of parallel speciation/niche availability, and the
relationship between times from fossils and molecules
(e.g., Hedges et al. 1996; Tamura et al. 2004; Donoghue
and Benton 2007).

Evaluation of divergence times produced by using mo-
lecular clock methods is frequently based on their compar-
isons with paleontological, geological, and geochemical

record (e.g., Donoghue and Benton 2007; Kodner et al.
2008; Givnish et al. 2009). Molecular and nonmolecular
time estimates do not always agree, and their differences
have fuelled debates on possible biases inherent in both
types of data and the methods of analyses (Ayala 1999;
Smith and Peterson 2002; Graur and Martin 2004; Hedges
and Kumar 2004; Reisz and Muller 2004; Blair and Hedges
2005; Pulquerio and Nichols 2007; Peterson et al. 2008).
One reason for the observed differences between molecu-
lar- and fossil-based divergence times is that the latter often
concerns the morphological modification of a descendant
lineage compared with the former, which dates the genetic
divergence immediately following the speciation event
(e.g., Hedges et al. 1996; Steiper and Young 2008). However,
it is rarely possible to resolve large differences between mo-
lecular and nonmolecular time estimates in this way. A case
in point is the timing of origin of animal phyla recorded in
theCambrian explosionwheremolecular clock estimates for
divergences are often much older than paleontological esti-
mates (Wray et al. 1996; Smith and Peterson 2002; Hedges
et al. 2004; Blair and Hedges 2005; Peterson et al. 2008).

In order to assess the utility of molecular clock estimates,
many investigators compare times obtained using al-
ternative calibrations, different software packages, and
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alternative taxa and gene samplings (Hedges et al. 2004;
Perez-Losada et al. 2004; Ho et al. 2005; Linder et al.
2005; Hug and Roger 2007; Lepage et al. 2007; Rutschmann
et al. 2007; Brown et al. 2008; Poux et al. 2008). Such inves-
tigations provide information on the robustness of esti-
mated time to the data subsamples and evolutionary
assumptions, but they do not provide a systematic evalu-
ation of the accuracy and bias of the time estimates and
associated credibility intervals (CrIs).

Different clock methods may produce disparate times
due to their implicit handling of the rate heterogeneity
across lineages, the number and position of calibrations,
and the set of genes analyzed (Bromham and Penny
2003; Ho and Larson 2006; Pulquerio and Nichols 2007).
The interactions among these factors in any empirical data
set hinder attempts to systematically assess their effect on
the time estimates. For example, using two empirical data
sets, Hug and Roger (2007) investigated the effect of the
position of a single calibration point on the estimate of di-
vergence time of the deepest node in their phylogeny. The
estimates are found to depend on the position of the cal-
ibration, the relaxed-clock method used, and the data set
analyzed. In contrast, Hedges et al. (2004) have reported
similar estimates across multiple methods when data set
and calibration times were held constant throughout
the analysis.

In the absence of the knowledge of the true divergence
times, which is frequently the case in empirical studies, it is
not possible to assess which combination of clock method
and data subset has produced the best estimate. For this
reason, computer simulations are employed to directly
compare the estimates of divergence times with the sim-
ulated (true) times. For example, Bayesian and maximum
likelihood methods have been reported to recover the true
rate (and, thus, time) when the model they assume coin-
cides with that used for simulating sequences. CrIs gener-
ated by taking into account different sources of
uncertainty (e.g., number of genes, imprecision of the cal-
ibration, rate variation) are also found to contain the true
time in 95% of the simulations (Sanderson 1997; Kishino
et al. 2001; Ho et al. 2005; Kumar et al. 2005; Drummond
et al. 2006). However, an assessment of the robustness of
different relaxed-clock methods under autocorrelated rate
(AR) and random rate (RR) changes remains unexplored,
even though these methods are frequently used to esti-
mate divergence times without knowing the actual model
of evolutionary change. Furthermore, an evaluation of the
effects of the number of calibrations on the time estima-
tion is lacking.

Therefore, we have conducted a computer simulation
study to examine the absolute and relative performance
of molecular clock methods when the evolutionary rate
varies among lineages under different models of rate
change, and the phylogeny and calibration points are
known perfectly. We have simulated a large number of se-
quence alignments based on a set of 448 naturally derived
substitution rate and pattern parameters, including the
evolutionary rate, sequence length, and G þ C content

(Rosenberg and Kumar 2003). In producing these align-
ments, we modeled evolutionary rates among lineages such
that their change was AR (ancestor and descendant rates
were correlated) or RR. We evaluated two relaxed-clock
methods—the method of Thorne and Kishino (2002; Mul-
tiDivTime) and the method of Drummond and Rambaut
(2007; BEAST)—as they are primarily designed to model
such evolutionary rate changes among lineages in the es-
timation procedure. We focused on the estimation of the
absolute times using single and multiple genes, where one
or more true calibration points were applied. We also ex-
plored the frequency with which the CrIs reported by these
two methods include the true time because statistical tests
of hypotheses require their use.

Materials and Methods
We simulated gene alignments starting from naturally de-
rived ranges of parameters. These were drawn from 448
orthologous mammalian sequences, including the number
of sites (range 147–9,359 sites), the evolutionary rate (range
0.47–3.95 substitutions/site per billion years), the GC con-
tent (range 31–93%), and the transition/transversion ratio
(range 2.2–26.6) (Rosenberg and Kumar 2003). DNA sim-
ulations were carried out using the SeqGen program (Ram-
baut and Grassly 1997) under the HKY model of nucleotide
substitution (Hasegawa et al. 1985). A phylogeny consisting
of 14 species with node divergence times inspired by those
known for groups of mammals was used (fig. 1). Even
though the naturally derived parameters and the model
phylogeny were based on the mammalian taxa, we expect
the simulation results to be applicable to a wide range of
genes and phylogenies, because of the diversity of param-
eter sets considered.

FIG. 1. The model timetree used in computer simulations. The
internal nodes are labeled a–l, with node a being the ingroup root
node. Extant taxa are A through M plus the outgroup (out). True
times for each internal node are as follows: a: 173 Myr, b: 92 Myr, c:
90 Myr, d: 81 Myr, e: 85 Myr, f: 65 Myr, g: 74 Myr, h: 46 Myr, i: 20
Myr, j: 23 Myr, k: 10 Myr, and l: 5 Myr.
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In DNA sequence simulation, evolutionary rate (and thus
the amount of change) on an evolutionary lineage (branch)
of the tree was generated by assuming that the rate var-
iation was autocorrelated in ancestral and descendant lin-
eages (AR) or varied independently (RR). In AR simulations,
the mean autocorrelation was set to 1 (m in MultiDivTime)
following Thorne and Kishino (2002). In RR simulations, the
randomized evolutionary rate for each branch was drawn
from a uniform distribution over the interval from 0.5r
to 1.5r, where r is the nominal rate for the entire gene.
For short sequences and slow evolutionary rates, it is pos-
sible that identical simulated sequences are produced for
closely related species. In AR simulations, this happened
for only 3% (15 of the 448 genes) of the genes where at least
two taxa had identical sequences. In the RR simulations, all
genes had different sequences across taxa. Exclusion of time
estimates from these replicates did not alter our conclusions
or the results presented.

Simulated sequences were analyzed in MultiDivTime
and BEAST programs (Thorne and Kishino 2002;
Drummond and Rambaut 2007). We estimated branch
lengths under the F84 model using the Estbranches pro-
gram and generated the maximum likelihood estimates of
the shape parameter of the Gamma distribution of
evolutionary rates among sites and the transition/
transversion ratio using the PAML program (Nei et al.
2001; Yang 2007). This procedure was inspired by the
common analysis practices of biologists, especially the
use of Gamma distribution to model rate variation, even
though the sequences were simulated with uniform sub-
stitution rate among sites. (Results with and without
Gamma distribution of rates are expected to be identical
because the estimate of shape parameter was more than
two for every data set and exceeded ten for .95% of the
simulated data sets.)

For MultiDivTime program, the time estimation process
was completed after 10,000 samplings of the Markov chain,
a sampling frequency of 100, and a burn-in of 100,000. The
mean of the prior distribution for the ingroup root time
(rttm)wassetat173Myr.Otherparameterssuchasthemean
of the prior distribution for the rate of evolution (rtrate) and
the mean of the prior distribution for the autocorrelation
parameter (brownmean) were calculated specifically for
each alignment using the branch lengths information from
the Estbranches program and the ingroup root prior; rtrate
was given by the median of the root-to-tip branch lengths
divided by rttm, whereas brownmeanwas obtained dividing
a constant value of 1.5 by rttm, as suggested by the author.
Standard deviations of these parameters (rtrateSD and
brownSD) were set equal to the parameters themselves,
which is a common practice.

In addition to analyzing individual gene alignment sep-
arately, we generated 100 concatenated data sets of ten
genes each from AR and RR alignments. These concate-
nated subsets were analyzed both in a nonpartitioned
(NP) and a partitioned (P) fashion. We also generated five
concatenated alignments for AR and RR simulated sequen-
ces with 20, 30, 60, and 100 genes each.

BEAST analyses were conducted by using the model
topology (fig. 1) under the HKY model plus gamma
(four categories) and a lognormal relaxed-clock model.
The number of generations necessary to reach conver-
gence and effective sample sizes above 200 varied de-
pending on the data set, and thus, burn-in and
sampling frequency were adjusted accordingly. Even with
extensive computing resources available to us, it was not
possible to complete BEAST analyses for many data sets
either due to excessive time required or because of
the failure of BEAST calculations to converge. Finally,
BEAST produced results for 68 AR and 83 RR ten-gene
concatenations.

In these molecular clock analyses, we used different cal-
ibration sets to test the effect of single versus multiple as
well as shallow versus deep calibrations. The single calibra-
tions chosen were nodes b (92 Myr), h (46 Myr), i (20 Myr),
and k (10 Myr) in figure 1. Pairs of calibrations used were h
and k, d (81 Myr) and h, and j (23 Myr) and k. Because the
uncertainty in the calibration points was not the primary
topic of interest in this study, all calibrations were provided
as perfectly known, which necessitated the use of ±1 Myr
uncertainty in MultiDivTime and a uniform distribution of
±1 Myr around the true time in BEAST.

Results
We begin with results from the MultiDivTime analysis of
individual alignments. Because MultiDivTime models au-
tocorrelated changes in evolutionary rates over lineages,
we first used alignments generated using the AR. The
distributions of the estimated times (448 estimates for
each node) show a strong central tendency and are gen-
erally symmetrical (fig. 2). Distributions resulting from the
use of single and double calibrations are similar in shape.
The standard deviation of these distributions over all no-
des is 19% (12–41%) of the mean for estimates based on
single calibrations, which is slightly larger than that for two
calibrations where the standard deviation is 14% (7–28%)
of the mean. Therefore, the use of an additional (perfect)
calibration point leads to more precise estimates (smaller
standard deviation), as expected. Regardless of the number
of calibrations used, the dispersion of the time estimates
around the true time depends on the position of the cal-
ibration relative to the estimated node. That is, smaller
dispersions are associated with nodes closer to the calibra-
tion points. Nonetheless, the central tendencies are not
shifted away from the true time even for the highly dis-
persed cases.

Performance of CrIs
MultiDivTime produces 95% CrIs that convey the level of
uncertainty in the estimated times. Overall, double calibra-
tions produce ;20% narrower CrIs, that is, times are esti-
mated with a greater precision using multiple calibrations
(fig. 3A). Another important measure of success of a statis-
tical estimator is the frequency at which the 95% CrIs con-
tains the true time in all the replicates; it should be at least
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95% (i.e., less than 5% failure rate). This requirement was
fulfilled for most nodes in single and double calibrations,
except for the three deep nodes in the phylogeny (a, c,
and e; fig. 1). Their CrIs did not contain the true time in
.5% replicates for some calibration sets (fig. 3B and sup-
plementary table S1, Supplementary Material online). The
node with the highest average failure rate (10%) is the
deepest one (node a), probably because it is separated
by a long internal branch from the rest of the tree. These
results indicate that single gene time estimates and their
CrIs may be misleading (conservative in rejecting the null
hypothesis) even when perfect calibration times are used,
and the distribution of lineage rate change is modeled cor-
rectly in the estimation procedure.

In practical data analysis, however, MultiDivTime is rou-
tinely applied even if there is no guarantee that the lineage
rates are autocorrelated. Therefore, we evaluated the perfor-
mance of MultiDivTime for sequence alignments generated
under a RR model, where lineages could deviate from the
average rate by ±50% under a uniform distribution of rates.
The CrI failure rates increase significantly when single cali-
brations are used (up to ;35%; fig. 4A and supplementary
table S2, Supplementary Material online). The use of double
calibrations does not alleviate the problem (fig. 4B and sup-
plementary table S2, Supplementary Material online). Thus,

the use of additional calibrations is not helpful when the
model of lineage rate change is misspecified. The only excep-
tions to the results mentioned above are time estimates for
nodes close to a single deep calibration point (nodes c and e),
where the failure rates are 0% and 3%, respectively. This per-
formance is likely a result of the proximity of these nodes to
the deep calibration point (node b). Therefore, MultiDiv-
Time produces biased estimates of CrIs when the underlying
assumption of autocorrelated lineage rates is violated.

Multigene Estimates of Species Divergence Time
In the above, we considered the CrIs produced in single
gene analyses, along with the distribution of individual time
estimates. We next examined how well the mean and other
measures of the central values of distributions of individual
time estimates over genes coincided with the true time.
This is useful because multiple individual gene times have
been used by many investigators to generate species diver-
gence times (e.g., Wray et al. 1996; Kumar and Hedges 1998;
Nei et al. 2001). In this case, the simple mean, mode, or
geometric mean of the distribution of individual gene time
estimates is used to infer the time of species divergences
(e.g., Morrison 2008). Simple arithmetic means of the gene
time estimates from MultiDivTime are close to the true
time (±10%) for a majority of the nodes for both AR

FIG. 2. Distributions of single gene time estimates obtained from MultiDivTime analysis of autocorrelated sequences. Results for four nodes are
shown for a subset of single and double calibrations. Vertical dotted lines mark the true time, with the arrows indicating the mean of the
inferred time distributions Cal, calibration.
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and RR simulations. However, we find that the inferred
times for the shallowest nodes can depart considerably
from the true time (nodes i, j, k, and l) and that the degree
of departure depends on the position of the calibration.
Divergence times for these nodes were overestimated in
MultiDivTime up to 29% for AR and 41% for RR alignments
when the calibration point was outside of the cluster
formed by terminal taxa I–L.

The poor performance in timing the ages of shallow no-
des cannot be remedied by using an additional calibration
point, as single and double calibration analyses produced

very similar results. We also examined whether the use
of a geometric mean may improve the inference because
the time distributions are never strictly symmetrical (e.g.,
Morrison 2008). The geometric means of the gene time es-
timates are on average 5–7% different from the true times
for AR and RR, respectively, which is slightly better than the
arithmetic mean. The problem of overestimation of times
for the shallow nodes is reduced, but not completely re-
solved, by the use of geometric means (12% and 18%
for AR and RR alignments compared with 17% and 28%
for arithmetic mean).

FIG. 3. Comparison of the size of the CrIs from single and double calibrations (A) and the percent cases in which the CrI contained the true
time (B). All results are for the MultiDivTime analysis of autocorrelated sequences. In panel A, all values for each node are averages over 3,136
replicates and calibration points. In panel B, for each node, there are seven success rates (percentage of replicates for which the CrI contains the
true time), which correspond to seven calibration sets and 448 replicates. In some cases, less than seven results are visible because of
overlapping points. The horizontal line marks the 95% threshold, which is the expected value because we constructed 95% CrIs. All success rate
values below 95% are circled with letters referring to nodes in Fig. 1.

Performance of Relaxed-Clock Methods · doi:10.1093/molbev/msq014 MBE

1293



Instead, the normalized difference between the estimate
and true times for shallow nodes is smaller than that for the
deeper nodes when at least one calibration point (in both
the single or the double calibration analyses) was within the
shallow node cluster (taxa I–L; supplementary figs. S1 and
S2, Supplementary Material online). The largest departures
from the true time are seen for the deepest node when only
shallow calibrations are utilized. Therefore, the use of dis-
tant calibrations is expected to yield poor time estimates
even when using a large number of genes.

In addition to the mean time estimates, confidence in-
tervals can be obtained from the distribution of gene times
(in our simulations 448 genes for each node) such that the
lower and upper boundaries of the interval correspond to
the 2.5th and 97.5th percentile of this distribution, respec-
tively. We calculated these confidence intervals directly
from the observed distribution of individual gene times

for each node because multigene times are not always nor-
mally distributed.

These multigene confidence intervals are very wide and
include the true time for all nodes in both AR and RR cases.
On the contrary, the confidence intervals calculated based
on the standard error of the mean (mean±1.96� SEM) are
too conservative (e.g., Kumar and Hedges 1998), and pro-
vide overly narrow intervals that fail to include the true
time for a majority of nodes in both AR and RR simulated
data sets (see supplementary tables S3 and S4, Supplemen-
tary Material online).

Instead of estimating times from a distribution of indi-
vidual gene estimates, most investigators now create
concatenations of the gene alignments and estimate diver-
gence times with or without retaining the information on
the individual gene boundaries. In order to examine the
accuracy of MultiDivTime in analyzing such data, we

FIG. 4. The relative success rates of CrIs in containing the true time when using MultiDivTime for the analysis of AR and RR simulated
sequences using single (A) and double (B) calibrations . The horizontal line marks the 95% threshold.
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constructed 100 concatenations of ten randomly selected
gene alignments for AR and RR simulations separately.
First, we carried out the nonpartitioned analysis for the
ten gene alignments, treating them as a single supergene.
We again used single and double calibration points in these
analyses.

As expected, multigene alignments produce better esti-
mates than the single gene alignments generated in both
AR and RR simulations, and these concatenation time es-
timates have smaller dispersions around the true time
(fig. 5). Central tendencies of time distributions for AR

and RR are similar to each other, although RR distributions
are wider (see supplementary fig. S3, Supplementary Ma-
terial online). Increasingly larger numbers of concatenated
genes result in a progressive improvement in the point es-
timate of time. For example, 30-gene concatenations sim-
ulated under AR conditions yield time estimates that were,
on average, 24% closer to the true time than those from the
10-gene concatenations (fig. 6). Increasing the number of
genes initially leads to a rapid increase in the accuracy of
time estimates, but this increase becomes slower and pla-
teaus after 60 genes (see also Kumar et al. 2005).

FIG. 5. Increased accuracy of times inferred from ten-gene concatenations (thick line) compared with those from single genes (thin line). A total
of 100 ten-gene concatenations and 448 single genes were analyzed. RR sequences showed patterns similar to the ARs (presented here). The
percent time difference is given by ([estimated time � true time]/true time) and is estimated for each replicate independently. MultiDivTime
results from single genes (thinner line) and from concatenations (bolded line) are shown for AR simulations. For a comparison, see figure 2 for
the distribution of actual time estimates for the nodes and calibrations for which results are shown here.
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Next, we examined the frequency with which the CrIs re-
ported byMultiDivTime for eachmultigene alignment con-
tained the true time. We found that the multigene
concatenations produce much narrower CrIs than those
from single gene estimates; multigene CrIs are less than half
as wide. For AR simulated data sets, multigene CrIs contain
the true time in 95% of the cases, which is expected because
the simulation and estimation models match. However, the
failing 5% CrIs are not equally distributed among nodes and
calibration sets. All nodes experience a failure rate above 5%
under at least one calibration condition with the most ex-
treme case being the deepest node a that fails under all cal-
ibrations used. Similarly, none of the calibrations applied
givesCrIswideenoughtoincludethetruetimeinasignificant
percentage of the simulations for all nodes. The worst cases
are those using the calibration duo j,kor a single calibration i,
which exhibit the highest failure rates with only 10% of the
nodes experiencing failure rates less than 5% (fig. 7).

However, there is no clear relationship between the posi-
tion of the calibration points and the success rate of CrIs, as
bothshallowanddeepcalibrationsproducemanynodeswith
low success rates. These results are consistentwith theobser-
vations of Hug and Roger (2007), who also did not find dis-
cernable correlation between time estimates and the depth

of the calibration. These failures cannot be fully explained by
biases thatmaybe introducedwhenconcatenatingsequence
alignments that have evolved with vastly different rates and
patterns, as largely similar results are obtained when the in-
dividual gene boundaries are retained in the analyses such
that the evolutionary parameters are estimated specifically
for eachgene (partitionedanalysis).However, foronecalibra-
tion condition (node k), there is significant improvement
with all nodes having failure rates below 5% (see supplemen-
tary fig. S4, Supplementary Material online).

In the analysis of RR multigene concatenations (nonpar-
titioned analysis), the success rate is significantly worse for
MultiDivTime CrIs because the divergence times show
wider distributions and the CrIs are not wide enough to in-
clude the true times. Overall, more than 20% of the CrIs
failed to contain the true time, with the CrIs for a larger ma-
jority of nodes (93%) failing to contain the true time in
greater than 5% of data sets. Again, the partitioned analysis
did not improve the situation. Instead, the failure rates be-
came higher. CrI failure rates were greater than 5% for 98%
of the nodes compared with 91% for the nonpartitioned
analysis. This problem is caused by decreases in the size
of the CrIs (;10%) in the partitioned analysis; this is unex-
pected, as the partitioned analysis should produce wider
CrIs because it involves the estimation of greater number
of parameters compared with the nonpartitioned analysis.

On the other hand, an increase of the number of genes in
the multigene concatenation data sets improves the time
estimates, as the 30-gene RR concatenations produced es-
timates that were 34% closer to the true time than those
from the 10-gene concatenations. Furthermore, the failure
rates of CrIs decreased significantly as well (66% compared
with 93% for 30-gene vs. 10-gene concatenations; supple-
mentary fig. S5, Supplementary Material online). Therefore,
it is better to use multigene alignments in relaxed-clock
analyses (see references in Hedges and Kumar 2009).

The higher failure rates observed for RR simulations in
MultiDivTimeanalysis aredue to theviolationof theprimary
assumption of ARs in the MultiDivTime software. BEAST
does not make this assumption, so we tested the perfor-
mance of BEAST for RR data and compared it with the per-
formance of MultiDivTime. We expected that the use of
BEASTwould produce narrower time estimate distributions
and decrease the failure rate of the CrIs. Indeed, the use of
BEAST leads to a significant improvement (table 1 and sup-
plementary figs. S6–S8, Supplementary Material online). In

FIG. 6. The effect of increasing number of genes on the difference
between estimated and true times. Each data point is the average
percent time difference obtained for all nodes using double
calibrations with MultiDivTime. Filled circles, autocorrelated
simulated sequences; empty squares, RR simulated sequences. A
second-order polynomial fits the data (R2 5 0.97 for AR sequences
and 0.90 for RR sequences).

FIG. 7. Nodes and calibration combinations yielding CrIs with
success rates �95% (open circles) and ,95% (filled circles). All
analyses were conducted by using MultiDivTime on autocorrelated
sequences. Cal, calibration.

Table 1. Percentage of Nodes with CrI Success Rate above 95% in
MDT and BEAST.

ARs (%) RRs (%)

Calibration MDT BEAST cCrI MDT BEAST cCrI

d, h 50 50 80 20 90 80
h, k 60 20 90 0 70 90
j, k 10 10 20 0 80 80

NOTE.—MDT, MultiDivTime. CrIs are estimated using the concatenated align-
ments. All calibration nodes are excluded from the total number of nodes
considered because they were constrained around the true time. Results from the
cCrIs are also shown.
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FIG. 8. A comparison of time estimates and CrIs produced by MultiDivTime (filled circles, with solid line) and BEAST (filled squares, with dotted
line), for example, nodes. Each point (black symbol) and the associated 95% CrI are shown for five 10-gene concatenation data sets when using
different sets of calibrations.
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particular, 96%of theCrIs contain the true time forRRmulti-
gene concatenations comparedwith only 78% forMultiDiv-
Time when comparing estimates obtained under the same
conditions. Moreover, the CrIs contain the true time in 95%
of the data sets for 80%of the nodes (table 1). This improved
performance could be produced by either wider CrIs or CrIs
more frequently distributed around the true time.We found
that, on average, the width of the CrIs does not differ be-
tween BEAST and MultiDivTime, but rather, the CrIs are
shifted toward the true time. Therefore, the use of BEAST
that employs the correct lineage rate model (RR) leads to
better results than those obtained by using MultiDivTime.

This led us to examine the performance of BEAST for the
analysis of the AR data sets that violate its assumption of
uncorrelated lineage rate changes. BEAST performed much
more poorly for AR data compared with the RR data. For
the AR data, the time distributions are wider for BEAST
compared with MultiDivTime, and the BEAST CrIs contain
the true time in 95% data sets only for 27% of the nodes on
average, which is much smaller than that seen for Multi-
DivTime (table 1 and supplementary figs. S9–S11, Supple-
mentary Material online). The reliability of CrIs by BEAST
decreased despite the CrI sizes being, on average, 10% larger
for AR sequences compared with RR. For BEAST estimates,
like those for MultiDivTime, individual nodes with the
highest failure rates are those more distant from the cali-
brations. Therefore, the highest percentage of nodes with
unsuccessful CrIs is given by the use of shallow calibrations
(j and k). Overall, BEAST produces poor results when the
sequences have evolved with ARs.

Concatenated gene sets (average length ;14,000 sites)
produce better time estimates, and smaller CrIs, than single
genes (average length ;1,350 sites). In addition to the re-
duction in sampling variance associated with the use of
more data, the rate equalization among lineages is an
additional possible factor in the improved accuracy. The
latter may result from an averaging effect of evolutionary
rates across lineages when individual genes are concate-
nated because each autocorrelated gene alignment was
generated independently of other genes in our simulations.
This means that different sets of lineages evolved slower
or faster than average in different genes, which, when
concatenated, would likely reduce rate differences across
lineages. An inspection of multigene concatenation phylog-
enies with branch lengths confirmed this effect.

This prompted us to simulate an alternative scenario
where evolutionary rate deviations among segments were
synchronized, which produces a long alignment with all
;10,000 bp sites experiencing the same autocorrelation.
This scenario simulates genome-wide biases in rate differ-
ences. Application of MultiDivTime to this data set repre-
sents a best case scenario: the lineage rate model used in
estimation coincides with the simulations scheme. We
then compared the time estimates obtained using these
simulated sequences with those obtained from comparable
length multigene concatenations. The individual time esti-
mates are similar between the two results: on average, in-
ferred times differ from the true times 4.5% and 4.9% for

multigene concatenation and the genome-wide scenario
(AR simulations) (see supplementary fig. S12, Supplemen-
tary Material online). However, the CrIs for the rate-syn-
chronized simulations are .50% wider than those
obtained from the ten-gene concatenations. Therefore, sig-
nificant estimation variance is introduced by the need to
account for autocorrelation of lineage rates.

Finally, we evaluated the general perception that similar
results obtained from different clock methods are more re-
liable (i.e., closer to the true divergence time). We examined
the similarity of time estimates for the same data set from
MultiDivTime and BEAST and quantified the difference be-
tween the true and the estimated times, pooling all results
whereMultiDivTime and BEAST estimated times do not dif-
fer by more than 5%. For these cases, we found that the es-
timated times are much more similar to the true time (32%
in AR and 27% in RR data sets) compared with those for all
other replicates. Furthermore, their CrIs are more likely to
include the true time. This provides initial support for the
common practice of arguing for higher reliability of esti-
mates if multiple ones produce similar results (e.g., Hedges
et al. 2004; Perez-Losada et al. 2004; Drummond et al. 2006).

Discussion
We have evaluated and compared the performances of
MultiDivTime and BEAST methods in timing evolutionary
divergences when sequences have evolved with variable
rates over time. We found that when the underlying as-
sumptions of the method employed are met (e.g., ARs
for MultiDivTime and highly variable yet uncorrelated rates
for BEAST), the relaxed-clock methods produce increas-
ingly better point estimates of time with larger numbers
of genes. We have also shown that concatenated gene sets
produce better time estimates, and smaller CrIs, than single
genes. This is due to a reduction in sampling variance and
the rate homogenization among lineages when rate vari-
able sequences are concatenated.

We have also examined the relative usefulness of single
and double calibrations when they are known with cer-
tainty. The means of the single-gene times as well as the
failure rates of CrIs are similar for one and two calibration
cases (fig. 2). The CrIs are narrower in the latter (by 24%;
fig. 3, panel A), but they do not ameliorate the high CrI
failure rates seen in some cases (Hedges and Kumar
2003; Near et al. 2005; Hug and Roger 2007). This lack
of difference in results obtained using single and double
calibrations may be attributed to the fact that we have
used perfect calibration times, which is rarely the case in
empirical data analysis (Benton et al. 2009). In a follow-
up study, we plan to quantify the improvements afforded
by the use of multiple calibrations when they are not
known perfectly, and we will also examine whether it is
preferable to use one (or a few) highly reliable calibration
point(s) rather than many minimum calibration points.

We do, however, find that the phylogenetic depths and
locations of the calibration points affect the time estimates
significantly. The shallowest nodes (nodes j, k, and l) in the
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tree are grossly overestimated if the calibration point does
not come from the group to which these nodes belong
(taxa I–L). Shallow nodes belonging to different phyloge-
netic clusters tend to be separated by large branch lengths,
as is the case in the model tree we used. This causes larger
differences between the estimated and the true times due
to the extent of extrapolation needed. In the same way, the
use of shallow calibrations to estimate the deepest nodes
leads to underestimation of older times. Therefore, time
estimates far from the calibration node are expected to
be unreliable, regardless of the accuracy of the calibration.

We then focused on those nodes that are closest to the
calibrations used and evaluated whether the proximity of
nodes and calibration points had an effect on the accuracy
of the time estimates. We divided the calibration/esti-
mated nodes into three groups: 1) the estimated node is
the direct descendant of the calibration, 2) the estimated
node is the direct ancestor of the calibration, and 3) the
calibration and estimated nodes have a sister group rela-
tionship. We found no significant difference among these
three types of calibration/estimated nodes. This suggests
that the relative positions of calibration and estimated no-
des do not affect the time estimations as long as the two
nodes are closely related.

Overall, however, CrIs reported by relaxed-clock meth-
ods for multigene data sets are overly narrow (conserva-
tive). They fail to contain the true time in greater than
5% data sets. These failure rates become uncomfortably
large when BEAST is used to analyze sequences that have
evolved with ARs, and when MultiDivTime is used to an-
alyze sequences that are a product of extensive, but uncor-
related, evolutionary rate changes over time. Therefore, the
selection of the appropriate relaxed-clock method is im-
portant in generating correct time estimates and CrIs.
As confirmed in this study, the estimated times are closer
to the true times when the two methods produce similar
time estimates regardless of the rate variation model fol-
lowed by the sequences.

In the real data analysis, it is generally difficult to know the
actual distribution underlying the changes in evolutionary
rates among lineages. One approach is to evaluate Bayes fac-
tors for sequences evolving under different models (e.g., one
that assumes autocorrelation and one that assumesuncorre-
lated rate changes). But this andother approaches are known
to make contrasting predictions when applied to empirical
data depending on the extent of taxonomic sampling, gene
selection, and the taxonomic level considered (Drummond
et al. 2006; Lepage et al. 2007; Brown et al. 2008; Ho 2009).
Though BEAST does provide a means to estimate themodel
of evolutionary rate variation, it is not known tobe very pow-
erful (Drummond et al. 2006).Nonetheless, we examinedour
ARconcatenated alignments, categorizing themas ‘‘autocor-
related’’ or ‘‘uncorrelated,’’ according to the 95% CrI of the
covarianceparameter (i.e., zero covariance indicatesuncorre-
lation; a95%CrI that includeszerodoesnotallowtoreject the
hypothesisofuncorrelation). Inallcases,BEASTdidnotdetect
significant autocorrelation (i.e., all covariance CrIs included
zero), which confirms its powerlessness.

A simple strategy to get around this problem is revealed
when one examines the CrIs reported by BEAST and Multi-
DivTime simultaneously for the same data set (fig. 8). It is
clear that when the lineage rate model assumption is vio-
lated, relaxed-clock methods would produce biased CrIs.
However, if AR and RR represent two extremes, then CrI
from at least one of the two programs (MultiDivTime
and BEAST) will be appropriate. It is therefore possible
to reduce the CrI failure rates significantly by building
a composite CrI derived from the two CrIs. In the compos-
ite credibility interval (cCrI), the lower bound is given
by cCrIlower 5 minimum(BEAST-CrIlower, MultiDivTime-
CrIlower) and the upper bound is given by cCrIupper 5
maximum(BEAST-CrIupper, MultiDivTime-CrIupper). By def-
inition, cCrIs are wider than those from BEAST and the
MultiDivTime alone. cCrIs are, on average, 12–37% wider
than MultiDivTime and BEAST CrIs under AR and RR con-
ditions. The largest increase in width is obtained compared
with MultiDivTime CrIs with 37% (2–73%) wider intervals
for AR simulations and 27% (2–53%) for RR simulations.
Compared with BEAST CrIs, the increase of cCrIs width
is 14% (0–35%) for AR and 12% (0–57%) for RR sequences.

Application of the cCrIs strategy decreases the failure
rate of CrIs for all data sets, with an overall success rate
equal to 95% compared with the success rate of 88% when
an investigator applies only one of the two methods with
equal probability. The success rate for individual nodes also
improves the range from 80% to 100% for both rate var-
iation cases. The only exception is the autocorrelated data
set in which both BEAST andMultiDivTime perform poorly
for which only a slight improvement is noted with the com-
posite CrIs (calibrations j and k) (table 1). Even in cases
where cCrI failed to include the true time, this was, on av-
erage, no more than 10% away from the upper or the lower
bound. These results are much better than those observed
for cases where BEAST or MultiDivTime CrIs were used.
Therefore, we recommend that cCrI be used to convey
the uncertainty in time estimates, especially because the
distribution of lineage rate is likely to be a mixture of cor-
related and uncorrelated rates. Furthermore, we recom-
mend that as many genes as possible be used to make
cCrIs narrower, which will improve the precision of the in-
ferred time estimates.

Supplementary Material
Supplementary tables S1–S4 and figures S1–S12 are avail-
able at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org).
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